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Presenter
Presentation Notes
Hi, I’m Sandy Taylor. I am a statistician affiliated with the CTSC and MIND IDDRC Biostatistics Core. Welcome to the first talk in a four part seminar series on applied statistics for this fall. We hope that you will find this series valuable such that we can continue to expand and strengthen the program. This talk in particular is intended to be conceptual and general in the sense that I am not going to go into when and how to conduct specific statistical tests. Subsequent seminars will focus on specific tests and procedures. 




We are video recording this 
seminar so please hold 
questions until the end. 

 
Thanks 



Seminar Objectives 

 Understand framework of traditional 
null hypothesis significance testing 

 Be able to correctly interpret p-values 

 Understand confidence intervals  

 Appreciate multiple testing issues and 
know corrections 

 

Presenter
Presentation Notes
What this talk focuses on are critical fundamentals of statistics. As in every field, folks tend to be interested in the advanced skills and concepts but as every good coach will tell you, its fundamentals that wins games. In statistics, understanding and appreciating the fundamentals is similarly important, and will diminish the chance that you will do something stupid with your data or in your publications.

My objectives for this seminar are for you to
 
Understand the framework of traditional null hypothesis significance testing
Be able to correctly interpret p-values
Understand confidence intervals and their relation to p-values
Appreciate multiple testing issues and know corrections



Cardiovascular Disease Dataset 

 600 Subjects 
 Presence/absence of coronary artery 

disease 
 Demographics – age, sex, race, BMI 
 Inflammatory biomarkers – CRP, 

LLPLA2, SAA, PTX3, FIBRIN, and 
HOMA 
 

I will use this dataset to illustrate 
various points. 

Presenter
Presentation Notes
I am going to use a data set on inflammatory biomarkers and cardiovascular disease as an example data set to illustrate various points. This data set has 600 subjects with approximately equal numbers of subjects with and without CAD. We have some basic demographics age, sex, race and BMI and we have values for 6 inflammatory biomarkers. For this talk, I am just going to focus on one of them HOMA. Homeostasis Model Assessment (HOMA) estimates steady state beta cell function (%B) and insulin sensitivity (%S), as percentages of a normal reference population.



Primary and Secondary Aims 

 Primary Aim: Do HOMA levels differ 
between CAD(+) and CAD(-) 
subjects? 
– Does the mean of HOMA levels differ between 

CAD(+) and CAD(-) subjects?  

 Secondary Aims: Do CRP, LLPLA2, 
SAA, PTX3, and FIBRIN levels differ 
between CAD(+) and CAD(-) 
subjects? 

Presenter
Presentation Notes
While I am sure we can think of a multitude of questions we might want to investigate with this data set, let’s suppose that are primary aim is in whether HOMA levels differ between CAD status. Secondarily we want to look at other markers. 

I am going to start with the primary aim to illustrate null hypothesis significance testing and p-value interpretation and then use the secondary aims to illustrate multiple testing.



The truth is out there. 

If we had data from every person in our population we would know with certainty the 
difference in the group means. 

Presenter
Presentation Notes
For our primary aim, we want to know if the mean levels of HOMA differ between CAD groups. 

The truth is out there. 

If we had data from every person in our population, we would know with certainty the difference in means between the groups.



 Since we can’t 
observe every 
individual in a 
population, we 
collect a sample 
from the 
population. 
 

 We seek to make 
inferences (i.e., 
make decision 
regarding our 
hypothesis) about 
the entire 
population based 
on the sample. 

 

Presenter
Presentation Notes
Clearly though we can’t instantaneously measure HOMA levels and CAD status in every individual in our population of interest. Therefore, we collect a sample from the population and we seek to make inferences (i.e., make decision regarding our hypothesis) about the entire population based on a manageable sample.



Sampling yields variability 
Between Subject Variability Between Sample Variability 

 Values differ between 
subjects 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Standard deviation  

 Estimates differ between 
studies 
 
 
 
 
 
 
 
 
 
 
 

 Standard error 

Presenter
Presentation Notes
When we take a sample from a population, we encounter two types of variability. One is the between subject variability. We are pretty tuned into this type of variability. People differ. The histogram on the left represents a sample taken from the population in the previous slide. This shows the distributions of the values obtained across subjects. Clearly there are differences between patients. This variability is summarized by the standard deviation. 

The other type of variability we encounter is between study variability or between sample variability. We tend to be much less tuned into this type of variability. This is the variability that occurs between samples. The right hand side shows 4 different samples of the same size from the same distribution. The vertical line shows the sample mean. The true population mean is actually 2. What we see is variability in the shape of the distributions even though the source data is normally distributed and the means bounce around. I want you to really think about this and appreciate it. When you take a sample, you get one of these and you base your conclusions and estimate parameters on this one sample. With a different sample you would almost certainly have different parameter estimates (e.g., means) but could also draw a different conclusion.



Illustration of between 
study variability 

Presenter
Presentation Notes
Run simulations. What I want to do is further illustrate between study/sample variability. 
Go to “Basics” “Distribution of means (continuous distribution)”

Here I simulate a distribution with a mean of 2 and standard deviation of 1 which is what was illustrated in the previous slides. Step through a couple samples. Then have it walk.

Points here are 
Every sample is different
Means bounce all over the place but are largely centered on 2 the true mean
Mean of means converges to the true mean



How do we go from a sample to a 
decision? – Statistics! 

Assume Ho is 
true. 

Sample the 
population 

Determine 
probability of 

observing sample 
data (i.e., conduct 

statistical test) 

Reject or Fail to 
Reject Ho 

Infer about 
Population 

Presenter
Presentation Notes
Given the within and between sample variability, how can we go from a sample to a decision? That is where statistics comes into play. 

This diagram shows the steps in the process. First, we assume the null hypothesis is true. For example, we take the position that mean HOMA levels do not differ between CAD groups. Second, we collect a sample. Third, loosely we estimate the probability of observing the sample data if the null hypothesis is true. Fourth, based on that probability we make a decision of whether to reject the null hypothesis and fifth we extend our decision to the population of interest. 



Null Hypothesis Significance 
Testing Framework 

 In null hypothesis significance 
testing, we posit a null hypothesis 
– Ho: Mean CAD(+) = Mean CAD(-) 

 We seek to reject the null hypothesis 
in favor of an alternative hypothesis.  
– Ha: Mean CAD(+) ≠ Mean CAD(-) 

 Notice the simplicity of Ha  
– It’s just that they aren’t equal. No info on 

magnitude 
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We propose a null hypothesis which is actually the opposite of what we hope to show. Then we collect data that we hope will be unlikely if the null were in fact true.



Hypothesis Testing: Ideas on Trial 
Courtroom Hypothesis Testing 

 Presume innocent 
 Present and evaluate 

evidence 
 Jury verdict 

– Guilty – ‘beyond a 
reasonable doubt’ 
standard avoids 
incorrect conviction 

– Acquittal – not proof of 
innocent 

 Incorrect guilty verdict 
worse than incorrect 
acquittal 

 Assume null hypothesis is 
true 

 Gather and evaluate 
evidence 

 Statistical test result 
– Reject Ho – significance 

level (𝛼𝛼) controls 
incorrect rejection 

– Fail to Reject Ho – not 
unlikely to observe data 

– Does not prove Ho is true 
 False positive worse than 

false negative 

Presenter
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To firm up these ideas, let’s take our judicial system as an analogy. In the US, when someone is put on trial, we presume they are innocent. This is analogous to assuming the null hypothesis is true. In a trial, the prosecution and defense present evidence and the jury evaluates that evidence. This is analogous to taking a sample from the population. The jury gives a verdict. The jury is instructed to find the defendant guilty if the evidence presented supports guilt “beyond a reasonable doubt” otherwise the jury is to acquit the defendant. The “beyond a reasonable doubt” standard is a high bar intended to minimize false convictions. An incorrect guilty verdict is deemed worse than incorrect acquittal. Analogously, in hypothesis testing, we reject Ho (i.e., find Ho guilty) if our p-value is < set significance level. We select a small significance level (i.e., 0.05) to guard against false positives given the perspective that false positives are worse than false negatives (i.e., not finding a difference). In both cases (courtroom and NHST) it is important to remember that acquittal/failure to reject is not proof of innocence/truth of null. It just means that there was not sufficient evidence to support the alternative conclusion. This is a really crucial concept.




Absence of evidence is NOT 
evidence of absence! 

Courtroom  
Conviction: Beyond a reasonable doubt 
Acquittal: Reasonable doubt – evidence 
insufficient 
 
Hypothesis Testing 
Reject Ho: Probability of observing data if 
null hypothesis is true is unlikely 
Fail to Reject Ho: Probability of observing 
data if null hypothesis is true is not 
unlikely 
 

Presenter
Presentation Notes
This is a really crucial concept. 
In both cases (courtroom and NHST) it is important to remember that acquittal/failure to reject is not proof of innocence/truth of null. It just means that there was not sufficient evidence to support the alternative conclusion. 




Hypothesis Testing: Ideas on Trial 

Ho False 
(Defendant is Guilty) 

 
Ho True 

(Defendant is Innocent) 
 

Reject Ho 

(Guilty Verdict) Correct decision Type I error (𝛼𝛼) 

Fail to Reject Ho 

(Acquittal) 
 

Type II error (𝛽𝛽) Correct decision 
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We can summarize the possible outcomes both of a trial and hypothesis testing. We make correct decisions if we convict a defendant who is guilty or acquit a defendant who is not guilty. We make an error if we convict an innocent person (false positive type I error) or acquit a guilty person (false negative type II error)



Return to CAD Example 

Presenter
Presentation Notes
With that background, let’s go back to the HOMA and CAD data. 

Recall that we want to evaluate whether mean HOMA differs between CAD groups.

What does our data look like? We see that the shape of the distributions is similar between groups. Both are strongly right-skewed which we will deal with later. We can calculate the means and the standard deviations for each group which yields a mean of 3.5 in the CAD(+) and a mean of 2.7 CAD(-). So our sample data suggests that HOMA may be higher in CAD(+) subjects than CAD(-). We want to use this sample to make inferences, i.e., draw some conclusion about HOMA levels for CAD(+) and (-) people in our target population.



Does HOMA differ between CAD(+) 
and CAD(-) Groups? 

CAD(+)   
mean = 0.84, sd = 0.83, n = 310  

 

CAD(-) 
mean = 0.67, sd = 0.73, n = 290 

 
• Define the Null (Ho) and Alternative (Ha)  Hypotheses 

 Ho: Mean HOMA levels do not differ between CAD(+) and CAD(-) 
 Ha: Mean HOMA levels differ between CAD(+) and CAD(-) 

• Calculate test statistic 
▫ t = 2.77 
 

• Calculate the probability of observing a t ≥ ± 2.77 if the null hypothesis 
was true! 

• p-value = 0.006 

𝑡𝑡 =  
�̅�𝑥 − 𝑦𝑦�

𝑠𝑠𝑥𝑥2
𝑛𝑛𝑥𝑥

+
𝑠𝑠𝑦𝑦2
𝑛𝑛𝑦𝑦

 

Presenter
Presentation Notes
Since the data are strongly right skewed, I log transformed the data to yield a more symmetric (e.g., bell shaped) distribution. With this transformation, we see of course that the mean of the CAD(+) group is larger than the CAD(-) group IN THIS SAMPLE

We define our null hypothesis as Mean HOMA levels do not differ between CAD(+) and CAD(-). We define our null hypothesis as the opposite of what we want to show so because it is much easier to disprove something than to prove something. 

We then calculate a test statistic. In this case we use a t-test and calculate a t-statistic. The formula uses the difference between the observed means as a function of the data variability. The bigger the difference between the means (relative to the variance), the larger the t-statistic. For our sample, we get a t statistic of 2.77. 

Now, assume the null hypothesis is true, meaning that the means of the two groups are the same. If this were true then we would expect the value of the t-statistic to be 0 since the difference in the means would be 0. 

So, if the means were the same, how likely is it that we would get a t-statistics of 2.77 or greater. Remember the simulations I showed of different samples and how the means bounce around. We could have ended up with this difference simply by chance. Since we know how the t-statistic is distributed under the null hypothesis we can calculate the probability that we would get something this extreme simply by chance.

This turns out to be 0.006 or 0.6%. This is what a p-value is. Since it is pretty darn unlikely that we would see a difference like this if the null was true, we reject the null hypothesis. 

In courtroom terms, we conclude the null is false “beyond a reasonable doubt”



What exactly are p-values? 

 Probability that you would 
observe a test statistic at 
least extreme as you did if 
the null hypothesis is true 
– We know the distributions test 

statistics under Ho which 
allows us to calculate p-values 

 P = 0.006 – small probability 
so reject null hypothesis 

 Did not prove alternative 
hypothesis 
 0.6% 

Presenter
Presentation Notes
I want to spend a little more time talking about p-values. I suspect you feel I am beating a dead horse but this is really important. There is a lot of misunderstanding about p-values. 

P-values are NOT the probability that the null hypothesis is true. It is the probability that you would observe a test statistic as or more extreme than the one you did IF the null was true. 

Recall between study variability. With a different sample, we will get different mean values, different standard deviations hence a different test statistic and A DIFFERENT P-value.  




What’s so special 
about 0.05? 

 Origin attributed to 
Ronald Fisher (1890-
1962) 

 English statistical 
evolutionary biologist 

 Authored Statistical 
Methods for Research 
Workers  

– Very influential text 
– Provided probabilities 

between coarse bounds 
rather than very detailed 
tables – these were 
widely copied 

“The value for which P=0.05 or 1 in 
20; it is convenient to take this point 
as a limit in judging whether a 
deviation ought to be considered 
significant.” 
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Everybody knows that a difference is “significant” if the p-value is less than 0.05. Right? So if you have p-value of 0.051 you have nothing but if it is 0.049 you can publish.  Poppycock!

Did you ever stop to think about what’s so special about 0.05?

The origin is largely attributed to Ronald Fisher. Ronald Fisher was an evolutionary biologist with a statistical bent who worked during the early to mid 1900s. He published Statistical methods for research workers. In this text, he provided probabilities of standard distributions (e.g., normal, t, chi-square) between coarse bounds (e.g., 5 to 10%) rather than at every 1%. Much more compact. The text was very influential and the tables were widely copied. 

In addition to the coarse tables, Fisher is also credited with saying “The value….

Although there are other passages from the text, that deviate from the 0.05, it seems that this was largely the impetus for the birth of 0.05 as denoting “significance”





What if we had a different sample? 

Presenter
Presentation Notes
When we use for 0.05 to determine significance this is our alpha/significance level. This value limits the Type I error rate – the rate at of false positives. It says if the Null hypothesis is TRUE, no more than 5% of the time we will reject it. So, if we repeatedly sampled, over and over again, and calculated the test statistic, if there truly is no difference in means, 5% of the time we would reject anyway. 

Run two sample t-test with no difference

Note – most of the time (should be 95%) the test statistic is within the bounds but a few times it falls in the zone of “significance”

Remember – you don’t know which of these samples you have or what the truth is.



Statistical vs. Clinical Significance 
 Statistically significant is not necessarily 

clinically significant 
 Not statistically significant is not necessarily 

not clinically significant 

Presenter
Presentation Notes
The next concept I want to touch on is statistical vs. clinical significance.
We found a p-value of 0.006 which is statistically significant and may well be of clinical significance too.

This may not always be the case. 
When we run a statistical test, we calculate a p-value and as we have seen the p-value gives the probability that we would observe a test statistic this extreme if the null hypothesis is true. In other words it is the probability of making a type I error if we chose to reject the null hypothesis. Note that this construct says absolutely nothing about clinical significance. 

Just because something is statistically significant does not mean it is clinically significant and just because something is not statistically significant does not mean it is not clinically significant. 

To illustrate this point, let’s return to our HOMA data.  

In our sample, the group without CAD has a mean of 0.67 on the log scale and the with CAD group has a mean of 0.84 yielding a difference of 0.17. What if the mean of the with CAD group was 0.68? Probably wouldn’t consider this as clinically significant. Yet – with a large enough sample size this difference can become highly significant.
What’s happening here? Recall that our null hypothesis is that the means don’t differ. We don’t say anything about by how much. We just ask, “Are the means of these two groups different?” As our sample size gets larger we get more and more information about the true mean. Thus our estimates of the true means get more and more precise. Consider we have a difference of 0.01 and assume the standard deviation of the data is 0.8 similar to our sample. Let’s look at what happens to the p-value values as the sample size increases.
If we had a sample size of 35,000 a difference of 0.01 would give us a p-value < 0.05. A sample size of 70,000 for this same data would yield a p-value < 0.01. Statistically significant – Yes. Clinically significant – No. You may think that sample size like this are completely unrealistic but if you are using a national database, you can easily have sample sizes this large. In which case you are likely to find statistical significance but the magnitude of the difference might not be clinically significant. Which brings me to Point Estimates and Confidence Intervals.

 



Point estimates and confidence 
intervals more informative 

 P-values help in decision-making 
about the null but provide no 
additional useful information 

 Point estimates – size and direction of 
differences/relationships 

 Confidence intervals – precision of 
estimates 

 

Presenter
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Point estimates and confidence intervals are more informative than a p-value. 

P-values help you in making a decision about the null hypothesis but provide no additional useful information.

Consider our HOMA example, if all I told you was that we found that the mean HOMA levels differ significantly between CAD(+) and CAD(-) subjects, what could you do with that information? Your next questions would or should be by how much and in which direction? 

This is what you get with point estimates. They give you tangible information about the size and direction of differences or relationships. That is the fundamentally useful information from a study.

Then we have confidence intervals which should be equally important to you. 

Confidence intervals give us a measure of the precision of our estimates. This is something we don’t use enough but is really important. It tells us how much our point estimates are likely to bounce around with different samples. 



What are confidence intervals and 
what do they tell us? 

 Define a range that includes the true 
value with a high degree of confidence, 
typically 95%. 

 The confidence interval is NOT the 
probability that the true value is within 
the confidence limits. 
– The true value is either in the limits or not with 

probability 1 or 0. 

 Repeated sampling and construction of 
confidence limits will encompass the true 
value 95% of the time 

Presenter
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Confidence intervals tend to be misunderstood so I want to spend a little time on them. 
What are confidence intervals and what do they tell us? 

Confidence intervals define a range that encompasses the true population mean with a high degree of confidence. Recall that we have taken a sample of our populations (with and without CAD), and estimated the population difference in means between the two groups based on the sample. We know that if we took another sample that our estimate of the difference would be somewhat different. We want/need some idea of the range in the estimates that we would obtain given multiple samples and to define a range in which we have high confidence that it covers the true population value. Hence we define a 95% confidence interval for our estimate of the difference from our sample. Here again we need to recognize that our estimates and 95% confidence intervals will vary from sample to sample.




Illustration of confidence intervals 

 

Presenter
Presentation Notes
Use Test  program. 

Let’s assume that we are interested in whether the means of two groups are different. Let’s assume that the means of two groups do in fact differ by 0.6 considering the whole population and that the standard deviations are 1. 

Now let’s draw repeated samples from these groups, and estimate the mean difference and 95% CI. 

There are a couple things I want to point out here. First, notice all the red intervals. These are 95% CI from a few samples from our population and they don’t cover the true difference of 0.6. On average 5% of the CI will not contain the true value. Think about this. I think we all have a tendency to think our point estimate is right on the money or at least close and we usually give little regard to the CIs but these simulations show that 5% of the time, the confidence interval isn’t even going to cover the true value. Second, look at all the confidence intervals that cover 0. For those samples, we would not have concluded that the groups had different means even though they do. We would have failed to reject the Ho when we should have. This brings us to Type II errors and power.



Type II Errors and Power 
 Significance level (α) limits type I 

error 
– Set fairly low to minimize false positives (e.g.,  

wrongly convicting an innocent person) 

 Type II errors (β) are false negatives 
– failing to reject the null hypothesis 
when it is false 

 Power is probability of rejecting Ho 
when it is false 

 Power = 1 - β 

Presenter
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Up until this point we have been talking mostly about type I errors – the probability of rejecting the null when it is true. We have wanted to minimize making this type of error and so we have set our significance level (alpha) low.

The other type of error is failing to reject the null when it is false. This is the type II error. We want to minimize this as well. We usually talk about Power which is 1 – the probability of a type II error and is defined as the probability of rejecting Ho when it is false. Clearly, we want power to be high. 



What determines the power of a test? 

 Size of the effect, e.g., difference 
between groups 
– Larger effect                 more power 

 Variability of the data 
– Greater variability               less power 

 Sample size 
– Larger sample                more power 

 Significance level (α) 
– Smaller significance level               less power 

Presenter
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The power of a statistical test depends on 4 things – the size of the effect, the variability of the data, the sample size and the significance level.

The size of the effect is how different are the groups. For sample size calculations this is why we ask you how a large a difference you want to detect. The larger the difference or the effect the more power a procedure has. Intuitively this says that it is easier to spot big differences than small differences.

How variable is the data? As we have seen, our estimates vary with our sample. The more variable the data/population is the more variable our estimates will be between samples and the more difficult it will be to determine if two groups are different. Hence,  more variability leads to less power.

Sample size. The larger the sample the more power we have to detect differences. As we get a larger and larger sample, we get more and more certain about what the true values which gives us increasing power to distinguish groups.

Finally, the significance level we set impacts power. Suppose we set alpha at 1.0, and rejected the null under all circumstances? Then our power would be 100% because we would ALWAYS reject the null when it was false but we would also reject the null when it was true and hence our type I error would be 100% as well.

Clearly we strike a balance here. 

I also want to emphasize/point out that power and sample size calculations are part science and part art. It all “depends” on the assumptions on the assumptions you make in the calculations. 



How does sample size affect power? 
 Assumes difference in means of 0.6 with SD 

= 1. So the two groups truly differ. 
 
 
 
 
 
 
 
 

 If you only have 10 samples per group, you 
will reject the null hypothesis about 18% of 
the time if the true difference in 0.6. 

Sample Size  
(Per group) 

Number of Rejections 
(Power) 

10 18.0% 

30 60.0% 

50 86.0% 

100 99.0% 

Presenter
Presentation Notes
Use Test  program. 

Suppose we are interested in whether the means of two groups are different. Let’s assume that the means of two groups do in fact differ by 0.6 considering the whole population and that the standard deviations are 1. 

Now let’s conduct a two-sample t-test with varying sample sizes. 



Hypothesis Testing: Summary 

 Significance level controls type I error 
(false positives) 

 Power controls type II error (false 
negatives) 

 P-values aid in decision making about Ho 

 Point estimates and confidence intervals 
are more informative than p-values 

 Keep in mind between sample/study 
variation 

 Keep in mind the sample size 



Multiple Hypothesis Testing 

 What is it? 
 What does it mean to me? 
 What do I do about it? 

Presenter
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Up until this point we have been talking about testing one hypothesis. Recall that when we seek to reject a null hypothesis we allow ourselves a 5% chance of making a Type I error, i.e., of falsely rejecting the null hypothesis. 
What happens if we test another hypothesis? 

This brings us to a issue called multiple testing



What is Multiple Testing? 

 Conducting many hypothesis tests 
simultaneously 

 Examples: 
– Comparing heart rate, respiratory rate, blood 

pressure, SOFA scores, mean arterial pressure, 
and additional laboratory values 

– Comparing multiple patient outcomes, e.g., 
28-day mortality, in-hospital mortality, LOS, 
ICU LOS, ventilator days, readmissions 

– Evaluating scores from a battery of behavioral 
assessments 



What does it mean to me? 
 Type I error not controlled at 0.05 

– Recall Type I error = probability of rejecting the 
null hypothesis when it is actually true 

 Prob(at least  1 significant result) = 
 1 – Prob(no significant result)n = 
  1- (1-0.05)n 
 
For 10 tests, Prob = 1-(1-0.05)10 = 0.40 
 
40% probability of at least 1 false positive 

across 10 tests 
 

Presenter
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Recall the type I error is the probability of a false positive, i.e., the probability of rejecting the null hypothesis when it is in fact true. For a single hypothesis, we typically set the limit for that probability at 0.05. 
Now, suppose you are doing a study and there are 10 different things you want to look at. What is the probability of rejecting one of them simply by chance if all of the null hypotheses are true (i.e., none of the 10 things differ between the groups). 

If you do 10 tests, you have a 40% chance of rejecting a null hypothesis that is in fact true. This means you could go merrily on your way thinking you have discovered an important difference and reported and interpreted it when it is actually a false positive. 



Probability of at least 1 false positive 



What do I do about it? 

Adjust p-values to 
control the overall 
error rate at 
desired level 
rather than 
controlling the 
error rate for just 
one hypothesis 

Source: Schutz et al. 2019. PLoS Med 16(7): e1002840. https://doi.org/10.1371/journal.pmed.1002840 



Multiple Testing Adjustment 
 Control Family-wise Type I Error 

– Bonferroni adjustment 
• Use α´ = α 𝑛𝑛⁄  where n = number of tests 
• Simple, applicable anywhere, most conservative 

– Sequential procedures 
• Less conservative than Bonferroni 
• Holm’s step-down procedure 

 Control False Discovery Rate (FDR) 
– Controls proportion of false positives out of all 

rejected hypotheses 
– Benjaminin & Hochburg procedure 



Secondary Objectives:  
CRP, LPPLA2,  SAA, PTX3, FIBRIN 

Biomarker Raw P-value Bonferroni Holm’s  FDR 

CRP 0.0557 0.279 0.194 0.093 

LLPLA2 0.0855 0.428 0.194 0.107 

SAA 0.0486 0.243 0.194 0.093 

PTX3 0.8117 1.000 0.812 0.812 

Fibrin 0.0361 0.180 0.181 0.093 

Presenter
Presentation Notes
Used t-test to test for mean differences for all the other biomarkers. After adjusting for multiple testing, none remained “statistically” significant.



Interpretation & Reporting 



P-value Points to Remember 

 Probability of observing data more extreme 
than you did if the null hypothesis is true 

 NOT the probability that the null hypothesis 
is true 

 Absence of evidence is NOT evidence of 
absence 
– Particularly important for small studies 
– Non-significant P values do not distinguish between 

group differences that are truly negligible and group 
differences that are non-informative because of large 
standard errors.  

 P-values provide no information about the 
magnitude of differences.  
 

Presenter
Presentation Notes
P-values are NOT the probability that the null hypothesis is true. It is the probability that you would observe a test statistic as or more extreme than the one you did IF the null was true. 




Reporting & Interpretation 

Suppose p = 0.006  
 We could state, “Mean HOMA levels were 

significantly higher in subjects with CAD 
(p = 0.006). Log transformed mean [95% 
CI] values were 0.84 [0.75, 0.93] and 
0.67 [0.59, 0.72] for CAD(+) and CAD(-) 
groups respectively.”  

 Also report sample sizes: n = 310 and 
290, for CAD(+) and CAD(-)   

Presenter
Presentation Notes
Consider again our HOMA and CAD study. We found a p-value of 0.006 using our sample. 
This tend to be the easier of the two cases of significant or not significant to report
So we could say that the mean HOMA levels were significantly higher. 

We would also want to report the mean values and the confidence levels and sample sizes. Why? 




Now suppose p = 0.32  

 Would not want to say “CAD status had no 
effect on HOMA levels” or “HOMA levels did 
not differ by CAD status.” 

 We could state, “Evidence was not sufficient 
to reject the null hypothesis of no difference 
in mean HOMA levels by CAD status (p = 
0.32). Log transformed mean [95% CI] 
values were 0.84 [0.75, 0.92] and 0.79 
[0.65, 0.85] for CAD(+) and CAD(-) groups 
respectively.”  

 Again, report sample sizes.  
 



What if we see… 

Scenario 1 
 CAD(+): 0.84 [0.54, 1.14], n = 20 
 CAD(-):  0.42 [0.12, 0.72], n = 18  

 
Scenario 2 
 CAD(+): 0.85 [0.83, 0.88], n = 2000 
 CAD(-):  0.80 [0.78, 0.82], n = 1800  

 
 

Presenter
Presentation Notes
Scenario 1: Big estimated difference, small sample size. 

Scenario 2: Small estimated difference, large sample size
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NEJM Statistical Reporting Guidelines 

 Significance tests should be accompanied by 
confidence intervals for estimated effect sizes, 
measures of association, or other parameters of 
interest.  

 P values adjusted for multiplicity should be reported 
when appropriate and labeled as such in the 
manuscript 

 When appropriate, observational studies should use 
pre-specified accepted methods for controlling 
family-wise error rate or false discovery rate when 
multiple tests are conducted.  



Help is Available 
 CTSC Biostatistics Office Hours 

– Every Tuesday from 12 – 1:30 in Sacramento 
– Sign-up through the CTSC Biostatistics Website 

 EHS Biostatistics Office Hours 
– Every Monday from 2-4 in Davis 

 Request Biostatistics Consultations 
– CTSC - www.ucdmc.ucdavis.edu/ctsc/ 
– MIND IDDRC - 

www.ucdmc.ucdavis.edu/mindinstitute/centers
/iddrc/cores/bbrd.html 

– Cancer Center and EHS Center 
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