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Measuring biology at the single cell level
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DR-seq (2015)
G&T-seq (2015)
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Zhu, etc., Nature Methods, 2020, https://www.nature.com/articles/s41592-019-0691-5
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Bulk versus single cell sequencing

g " -. . -.-ﬂ = h '
T u's i -' m
sc-RNAseq 3 :_"':'L | W %
One bulk sample - % 3 ;'- mm "y
v OO o U = o .-.b.‘ S
g 8%O® &) EJWN-' l!.l-m' B
&~ 0 D O ' = 1
4 P a5 00 - Single-cell
8 C ke expression matrix
g Single
S Tumor Cells
o

» “Bulk” assays are named because you accumulate measurements
over a large number of cells (millions)

* Measurements are an average (gene expression, TF binding,
methylation, etc.) of many cells.

* The bulk measurement ignores the inter--cellular heterogeneities:
* Different cell types.
* Biological variation within the same cell type
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Cell identity and function are fluid concepts

A cell participates in

Revealing the vectors of cellular identity with single-cell multiple cell contexts.
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Single cell technologies are still under active development
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Many technologies for single cell sequencing

* Main distinction here: Full length transcripts (reads come from all regions of

the transcript) versus 3’ tagging (sequence only 3’ end of transcripts)

samples from humans) provides 100’s of samples at most per tissue

Table 1 Brief overview of scRNA-seq approaches

Protocol example Ci Smart-  MATQ-  MARS-seq  CEl-seq Drop-seq InDrop Chromium  SEQ-well SPLIT-seq
(SMARTer) seq2 seq

Transcript data Full length  Full Full 3-end 3-end 3-end 3-end 3-end 3-end 3-end
length length counting  counting counting  counting counting  counting counting

Platform Microfluidics Plate- Plate- Plate-based Plate-based Droplet Droplet Droplet Nanowell  Plate-based
based based array

Throughput (number 10°-10° 1010 10%-10* 10%-10° 10°-10° 10*-10° 10°-10* 10*-10° 10°-10* 10°-10°

of cells)

Typical read depth ~ 10° 10° 10° 10°-10°  10°10° 10%-10° 10°10° w0100 10%10°0  10f

{per cell)

Reaction volume Nanoliter Microliter Microliter Microliter  Nanoliter ~ Nanoliter  Nanoliter  Nanoliter  Nanoliter  Microliter

https://genomemedicine.biomedcentral.com/track/pdf/10.1186/s13073-017-0467-4
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10x Chromium
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10x Chromium
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Not all technologies are created equal
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https://www.nature.com/articles/nmeth.4220/figures/4
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scRNA-seq data has much more technical noise than bulk RNA-seq
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Still, scRNA-seq and bulk RNA-seq broadly agree
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There are many sources of biologically-relevant noise as well

HEALTH

Technical variation
e Batch effect
e Library quality
e Cell-specific capture efficiency
e Amplification bias

Allele-intrinsic variation

e Bursts of transcription
— Stochastic initiation
— Stochastic duration

® Varying rates of RNA
processing

Allele-extrinsic variation
(cell types and states)
* Fixed cell identity
— Discrete
— Continuous
e Temporal progression/oscillation

e Spatial location
— Niche environments

Clinical and Translational Science Center
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Basic applications

Single-cell analyses define a continuum of cell state and
composition changes in the malignant transformation
of polyps to colorectal cancer

Edward D. Esplin, Anshul Kundaje, James M. Ford, Christina Curtis, Michael P. Snyder & & William J.

Greenleaf

Nature Genetics 54, 985-995 (2022) | Cite this article https://www.nature.com/articles/s41588-022-01088-x
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Cell census (cell type identification, clustering)

a b
Samples collected FAP and normal donors SnANA (201,884 cells)
Datasets collected fj‘
. ploblebly atasetscolacted A
Sequenced 48 T E' ScATAC immune & 3 Y
unaffected &4 SNRNA o 4 P
FG)OCI;prg’ 27 normal’ . B scATAC & snRNA @ S s %
S S8 4'0 o 2 3 J
_()‘c)(o?g Source § g
=M ¢ = Colectomy - 5
= 1'10k Ce||S/Samp|e S = Colonoscopy s -
A = Autopsy g =
T = Tissue bank 2 =
= Preoperative
e radiation Souce C CCCCS SS AASTTTT
arcinoma FAP n““- No FAP UMAP dimension 1
d g h
Immune snRNA (18,643 cells) Stiome’ safivi (14,198 cols) I T (S Bl © Crypt Fib. 1
_ I N @ Crypt Fib. 2 Crypt
Adipocytes ¥ HEENT I | S B B CryptFib. 3 Fib.
T cells Mast : : I I CryptFib. 4
p P, W I IR © \/ilus Fib. WNTSB'
o o Fib H IS Fm : preCAFs
5 S »w - EEE 4§ s e CAfs
g 5 Plasma @ ‘ﬁ?‘}m s I . - Myofibroblasts 1 :
B NKT i ﬂ 2 | Endothelial % ¥, y I P » Myofibroblasts 2 | Myofib.
= 5 - Myofib. CTYPt I N @ Myofibroblasts 3
© g Pericytes MY Fb | "
o o ib. } I NE B I B B Pericytes
g B cells q@ <§( [T T ® Adipocytes
= = =] : B T ¢ Lymph. Endothelial ;
. DC E [T o R odotheli)
; . Glia I BEEEE # I el Glia
Macrophages My0f|b _ ® Neurons
I I @ Unknown
UMAP dimension 1 UMAP dimension 1 Carcinoma Polyp  Unaffected Normal
Clinical and Translational Science Center 15

HEALTH



HEALTH

Gene marker identification
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Trajectory inference

Integrated RNA Expression
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Cardiac remodelling after myocardial infarction
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Biomarker identification, potential metastasis mechanism

= CTC clusters originate from the primary tumor, exhibit increased metastatic propensity compared to single CTCs
= Abundance of CTC clusters in patients correlated with adverse outcome
= scRNA-seq revealed plakoglobin mediates CTC cluster formation, enhancing metastatic spread

= knockdown of plakoglobin abrogates CTC cluster formation and suppresses lung metastases
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Tumor clonal evolution

Experimental evolution in
TP53-deficient gastric organoids

Engineered TP33 deficiency into
human gastric organoids,
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Experimental design considerations
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Experiment design

= Beginning with the question of interest ( and working backwards )

= Traditional statistical considerations and basic principals of statistical design of
experiments apply.

— Control for effects of outside variables, avoid/consider possible biases, avoid
confounding variables in sample preparation.

e.g. diet in a study of genetic risk factors for gastric cancer
— Randomization of samples, plots, etc.
— Replication is essential

Adapted from Jie Li (GC)
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How many cells should | sequence per sample?

HEALTH

The number of cells to target can be estimated based on:
— The expected heterogeneity of all cells in a sample
— The minimum frequency expected of a particular cell type within the sample, and
— The minimum number of cells of each type desired in the resulting data set.

= For example, if we sequence a mixture of ~10 cell types where the frequency of the
rarest cell type is ~0.03, then we would need to sequence ~2250 cells to have a 90%
chance of capturing at least 50 of those rare cells.

= clearly difficult to know if you are sequencing new samples
— Check cell atlases (e.g. Human Cell Atlas, Tabula Sapiens)

https://tabula-sapiens-portal.ds.czbiohub.org/

-  www.satijalab.org/howmanycells
Adapted from Jie Li (GC)
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Sequencing depth required for scRNA-seq

= “Depth" (per cell) ~= # of reads/cell

= Factors to consider are (per lane):
— # of sequenced reads
— # of cells pooled for sequencing (estimate)
— Expected percentage of usable data (80% used below)

#reads 0 8 # sequenced reads
cell # cells pooled

= Read length, or single versus paired end, does not factor into depth above.
=  Should expect minimum ~20k+ reads/sample (Chromium v3)

Adapted from Jie Li (GC)
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Sequencing depth required for scRNA-seq

Other factors to consider for depth:

= Complexity of sample: the higher the complexity (more cell types, skewed
composition), the higher the depth (number of cells needed to be sequenced).

= |nterest in detecting genes expressed at low levels: the lower the level, the higher
the depth (dropout).

= Some cell types yield higher duplication rate than others

= The fold change you want to be able to detect ( smaller fold change requires more
replicates and higher depth).

= Detection of novel transcripts, or quantification of isoforms (full-length libraries)

The sequencing depth needed is determined by the goals of the experiment and
the nature of the sample.

HEALTH Clinical and Translational Science Center o5



Getting it done

i ! ' 26
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Cell Isolation

Library preparation (Per sample/pool)
Sequencing (Number of lanes)

Bioinformatics

— General rule is to estimate the same dollar amount as data generation, i.e.
double your budget

Clinical and Translational Science Center
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“Cost per cell”

Multiplexing cost calculator

Sample 'multiplexing), i.e. pooling cells from different samples together and running a sing
algorithm (Ye lab, UCSF), leverages genetic polymorphisms to demultiplex pooled cells from different genetic backgrounds, while the hashing' approach (Satija and
Technology/Innovation labs, NYGC), accomplishes similar goals with barcoded antibodies. Both approaches also enable robust detection of cross-sample doublets, as they will exhibit
multiple sample barcodes.

periment, has significant potential benefits for single cell experiments. The 'demuxlet’

By identifying and discarding doublets, multiplexing enables the ‘super-loading' of commercial droplet-based single cell platforms, which can greatly reduce costs. We provide a
multiplexing cost calculator below, which models the costs of library prep and sequencing for different experimental designs

Load preset 1/ We aim to recover 20,000 single cells. By multiplexing 8 samp
~$4,700

Load preset 2/ We aim to recover 20,000 single cells, without multiplexing. To achieve a similar non-identifiable multiplet rate, we need to spread the cells across 6 10x runs, with a
total cost of ~$14,000.

es together, running one 10x lane yields a non-identifiable multiplet rate of 2.9% and a total cost of

Number of cells desired Number of 10x lanes Number of multiplexed samples
20000 |1 8

Show advanced settings

ReSU|tS More detail

Total cells needed for loading: 42,146

Multiplet rate: 2 o
Total cost for library prep: $2,000

20,000 reads/cell: $2,726
Overall cost per cell @ 20,000 reads/cell: $0.24

Sequencing cost

0 0.28 0.48 0.6B 0.88 18 1

[~
o
=]
@

1.8B

Total number of reads

https://satijalab.org/costpercell/
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Who can help me construct the libraries and sequence?

HEALTH

DNA DNA Technologies & Expression Analysis
IECH Core Laboratory GENOME CENTER

« Single Cell Gene Expression (3' GEX V3.1)

« Fixed Single Cell Gene Expression (human and mouse samples)
« Single Cell Immune Profiling (5" GEX V1.1 and V2 + V(D)J)

« Single Cell ATAC-seq

« HT Gene Expression and Immune Profiling

« Visium Library Preparation (slide preparation not included)

« Single Cell Multiome (combined ATAC + GEX)

See website for current costs (always changing) — expect $1000’s for scRNA-seq, $100’s for RNA-seq per sample

https://dnatech.genomecenter.ucdavis.edu
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Who can help me do (some types of) analysis?

== UC Davis Bioinformatics Core

RNA-Seq (Per Project)

RNA-Seq p i lysis for model org ), including QC of raw data, ali to and g ion of tables of differentially expressed genes for typical two-factor experiment. For projects with 25
samples or more.

2058 As of Sept 2022

Non-UC Academic $3227

Data Analysis (Per Hour)

Custom bioinformatics analysis from experimental design to publication.

UC Campus $100
Non-UC Academic $158
Private Enterprise $195

Biostatistics (Per Hour)

Statistical analysis of bioinformatics data.

UC Campus $160
Non-UC Academic $251
Private Enterprise $310

https://bioinformatics.ucdavis.edu %
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Can | have someone in my lab trained to do the analysis?

The Bioinformatics Core offers training workshops for scRNA-seq analysis:
— https://bicinformatics.ucdavis.edu/training

Jul 21, 2022 Advanced Topics in Single Cell RNA-Seq Analysis: Multiomics ATAC-Seq & RNA-Seq

Jul 18 - Jul 20, 2022 Single Cell RNA-Seq Analysis

MIND Institute Investigators: The Biostatistics, Bioinformatics, & Research Design Core

— https://health.ucdavis.edu/mindinstitute/centers/intellectual-developmental-disabilities-
research/cores/bbrd.himl

Software packages to perform single cell analyses
— https://github.com/seandavi/awesome-single-cell

Online tutorials:
— https://www.singlecellcourse.org/
— https://bioconductor.org/books/release/OSCA/

Clinical and Translational Science Center
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https://www.singlecellcourse.org/
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Questions?
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