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Learning goals

 Understand the basics of the logistic regression model

 Understand important differences between logistic regression and linear regression

 Be able to interpret results from logistic regression 
(focusing on interpretation of odds ratios)

If the only thing you learn from this lecture is how to interpret odds ratio then we have 
both succeeded. 
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Terminology for this lecture

In most public health research we have

One or more outcome variable(s) (indicators of disease are common outcomes)
One or more predictor variable(s) (factors that increase or decrease risk of disease 
are common predictors)

Research goal: determine if there is a significant relationship between the predictor 
variables and the outcome variable(s)

For this talk we will call any outcome variable “disease” 
and any predictor variable “exposure” (exposure is anything that increases or 
decreases risk of disease)
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Choice of statical methods

Continuous (numerical) outcome 
(e.g. blood pressure)

Binary outcome 
(e.g. disease)

Categorical predictors 
(e.g. sex, race)

2 levels  T-test
>2 levels ANOVA 

Chi-square test

Continuous predictors 
(e.g. age)

Linear regression Logistic regression

ANOVA = analysis of variance
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example

Outcome: coronary artery disease (CAD) (yes/no)
CAD = coronary artery disease
Predictors
Sex (categorical with 2 levels male/female)
Age (continuous 24-72)
Weight (categorical with 4 levels)

Body mass index (BMI) weight

< 18.5 underweight

18.5  - 24.9 normal

25.0  - 29.9 overweight

> 30 obese



6

Outcome (CAD) is binary (disease / no disease)

and

One of the predictors is continuous (age)

Therefore we need to use logistic regression
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Similarities between linear and logistic regression

 Based on a mathematical model of the dependence of a single outcome variable 
(e.g. disease) on one or more predictor (exposure) variables

Predictors  outcome
 Predictor (exposure) variables can include any combination of continuous (e.g. age) 

and categorical (e.g. sex) predictors
 Model allows you to estimate exposure effects adjusted for confounders. 
 Uses p-values to determine if predictors are significantly related to the outcome
 Uses confidence intervals for estimates of interest
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key differences between linear and logistic regression

Linear regression: outcome is continuous (e.g. blood pressure)
Logistic regression: outcome is binary (e.g. disease / no disease)

Linear: dependence of the outcome on predictors quantified by
Differences between means (for categorical predictors)  
Slopes (for continuous predictors)

Logistic regression: dependence of outcome on predictors quantified by odds ratios
Key challenge for understanding logistic regression is being able to interpret 
odds ratios (to be defined soon)
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example: looking first at sex as a predictor of CAD

Sex No Disease (CAD) Disease (CAD)

male 162 (43%) 217 (57%)

female 136 (56%) 105 (44%)

Predictor is binary (male/female)
Outcome is binary (CAD / no CAD)

Therefore we use chi-square test

Chi-square p-value = 0.0009 males have significantly larger risk of CAD

We do not need logistic regression for this because the predictor is not continuous (not a number)
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example: looking first at sex as a predictor of CAD

Sex No Disease (CAD) Disease (CAD)

male 162 (43%) 217 (57%)

female 136 (56%) 105 (44%)

Three ways to quantify the (significant) sex effect
1. Risk difference
2. Relative risk
3. Odds ratios (what you would get from logistic regression)
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Risk difference and relative risk

Sex No Disease disease

male 162 (42.7%) 217 (57.3%)

female 136 (56.4%) 105 (43.6%)

Risk difference = P(disease for male) – P(disease for females) = 0.573 – 0.436 = 0.137

Interpretation: males are about 14 percent more likely to have CAD

Relative risk (also called risk ratio) = 𝑃𝑃 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑓𝑓𝑓𝑓𝑓𝑓 𝑚𝑚𝑑𝑑𝑚𝑚𝑑𝑑𝑑𝑑
𝑃𝑃 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓𝑑𝑑𝑚𝑚𝑑𝑑𝑚𝑚𝑑𝑑𝑑𝑑

= 0.573
0.436

= 1.31

Interpretation: males are about 1.3 times as likely to have CAD 
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odds ratios

The plan
define odds
define odds ratios for sex and CAD 
define odds ratios for weight (4 levels) and CAD
define odds ratios for age (continuous)
logistic regression with sex, weight, and age as predictors
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What are the odds? 
Suppose have game where the odds of winning are 2 to 1 

on average for every 2 games won 1 game is lost 
 on average win 2 out of every 3 games
 probability of winning is 2/3
 probability of loosing is = 1 – (probability of winning) = 1 - 2/3 = 1/3

odds = 𝑃𝑃 𝑤𝑤𝑑𝑑𝑤𝑤
𝑃𝑃 l𝑓𝑓𝑑𝑑𝑑𝑑

= 𝑃𝑃 𝑤𝑤𝑑𝑑𝑤𝑤
1−𝑃𝑃 𝑤𝑤𝑑𝑑𝑤𝑤

= (2/3)
(1/3)

= 2

More generally for any event 
odds =

𝑃𝑃 event
1 − 𝑃𝑃 event
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Odds ratios (OR)
odds ratio is a ratio of odds under two different conditions: for example exposed versus 
unexposed

OR = 𝑓𝑓𝑑𝑑𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑓𝑓𝑓𝑓𝑓𝑓 𝑑𝑑𝑒𝑒𝑒𝑒𝑓𝑓𝑑𝑑𝑑𝑑𝑑𝑑
𝑓𝑓𝑑𝑑𝑑𝑑𝑑𝑑(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑓𝑓𝑓𝑓𝑓𝑓 𝑢𝑢𝑤𝑤𝑑𝑑𝑒𝑒𝑒𝑒𝑓𝑓𝑑𝑑𝑑𝑑𝑑𝑑)

Because odds are always positive OR > 0

OR = 1  odds(disease for exposed) = odds(disease for unexposed) 
 Exposure does not affect risk of disease

OR > 1  odds(disease for exposed) > odds(disease for unexposed) 
 exposed have higher risk of disease than unexposed

OR < 1  odds(disease for exposed) < odds(disease for unexposed) 
 exposed have lower risk of disease than unexposed
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Null values for hypothesis testing

Null hypothesis is P(disease given exposed) = P(disease given unexposed)
The null values are

Odds ratios (OR) = 𝑓𝑓𝑑𝑑𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑓𝑓𝑓𝑓𝑓𝑓 𝑑𝑑𝑒𝑒𝑒𝑒𝑓𝑓𝑑𝑑𝑑𝑑𝑑𝑑
𝑓𝑓𝑑𝑑𝑑𝑑𝑑𝑑(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑓𝑓𝑓𝑓𝑓𝑓 𝑢𝑢𝑤𝑤𝑑𝑑𝑒𝑒𝑒𝑒𝑓𝑓𝑑𝑑𝑑𝑑𝑑𝑑) = 1

Relative risk = 𝑃𝑃 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑓𝑓𝑓𝑓𝑓𝑓 𝑑𝑑𝑒𝑒𝑒𝑒𝑓𝑓𝑑𝑑𝑑𝑑𝑑𝑑
𝑃𝑃 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑓𝑓𝑓𝑓𝑓𝑓 𝑢𝑢𝑤𝑤𝑑𝑑𝑒𝑒𝑒𝑒𝑓𝑓𝑑𝑑𝑑𝑑𝑑𝑑

= 1

Risk difference = P(disease given exposed) - P(disease given unexposed) = 0
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OR = 𝑓𝑓𝑑𝑑𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑓𝑓𝑓𝑓𝑓𝑓 𝑚𝑚𝑑𝑑𝑚𝑚𝑑𝑑
𝑓𝑓𝑑𝑑𝑑𝑑𝑑𝑑(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓𝑑𝑑𝑚𝑚𝑑𝑑𝑚𝑚𝑑𝑑) = 1.342/0.773 = 1.74

The odds of CAD for men is 1.74 times larger than for women

It is common practice to make the numerator the category we expect to have higher odds, but it is not necessary.

OR = 𝑓𝑓𝑑𝑑𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓𝑑𝑑𝑚𝑚𝑑𝑑𝑚𝑚𝑑𝑑
𝑓𝑓𝑑𝑑𝑑𝑑𝑑𝑑(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑓𝑓𝑓𝑓𝑓𝑓 𝑚𝑚𝑑𝑑𝑚𝑚𝑑𝑑) = 0.773/1.342 = 0.574

To interpret the OR we need to know which is in the numerator. 
1.74 is OR for male to female, 0.574 is odds ratio for female to male

Sex CAD n Probability of disease odds

male 217 379 217/379 = 0.573 0.573/(1-0.573) = 1.342

female 105 241 105/241 = 0.436 0.436/(1-0.436) = 0.773
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95% confidence interval for the odds ratio

 OR = 1.7
 95% confidence interval is (1.3, 2.4)

We say we are “95% confident” that the true odds ratios is between 1.3 and 2.4.

Why is this statement justified?

What does it actually mean?
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95% confidence interval for the odds ratio

 95% confidence interval is (1.3, 2.4)

 H0: OR=1 (null hypothesis)

Two ways to test if null hypothesis is true at significance level (“alpha”) 0.05
1. p-value < 0.05 (0.0009 < 0.05  significance)
2. 1 not in the confidence interval (1 is not in interval (1.3,2.4)  significance)
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Questions?
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RR and OR are close when the risk is small

Relative risk (RR) = 𝑃𝑃(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑓𝑓𝑓𝑓𝑓𝑓 𝑑𝑑𝑒𝑒𝑒𝑒𝑓𝑓𝑑𝑑𝑑𝑑𝑑𝑑)
𝑃𝑃(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑓𝑓𝑓𝑓𝑓𝑓 𝑢𝑢𝑤𝑤𝑑𝑑𝑒𝑒𝑒𝑒𝑓𝑓𝑑𝑑𝑑𝑑𝑑𝑑)

Odds ratios (OR) = 𝑃𝑃(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑓𝑓𝑓𝑓𝑓𝑓 𝑑𝑑𝑒𝑒𝑒𝑒𝑓𝑓𝑑𝑑𝑑𝑑𝑑𝑑)/𝑃𝑃(𝑤𝑤𝑓𝑓 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑓𝑓𝑓𝑓𝑓𝑓 𝑑𝑑𝑒𝑒𝑒𝑒𝑓𝑓𝑑𝑑𝑑𝑑𝑑𝑑)
𝑃𝑃(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑓𝑓𝑓𝑓𝑓𝑓 𝑢𝑢𝑤𝑤𝑑𝑑𝑒𝑒𝑒𝑒𝑓𝑓𝑑𝑑𝑑𝑑𝑑𝑑)/𝑃𝑃(𝑤𝑤𝑓𝑓 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑓𝑓𝑓𝑓𝑓𝑓 𝑢𝑢𝑤𝑤𝑑𝑑𝑒𝑒𝑒𝑒𝑓𝑓𝑑𝑑𝑑𝑑𝑑𝑑)

If the disease is rare for both exposed and unexposed then
P(no disease for exposed) ~ 1
P(no disease for unexposed) ~ 1
 RR ~ OR



21

Relative risk (RR) = 1.056

Odds ratio (OR) = 1.067

RR and OR very close because the risk for both males and females is small.

Sex No Disease disease

male 16 (84.21%) 3 (15.79 %)

female 10 (83.33%) 2 (16.67%)

Looking only at age <38 (to get data with small risks)

Small risk in both sexes
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Relative risk (RR) = 1.85

Odds ratio (OR) = 2.095

RR and OR are NOT very close because the risk is NOT small for both male and female

Sex No Disease disease

male 22 (88.00%) 3 (12.00%)

female 14 (77.78%) 4 (22.22%)

Looking only at age < 40

Small risk for females, but risk is 
not small for men
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Now that we understand how to interpret odds ratios for 2 groups we need to extend to

1. Categorical predictors with >2 groups
2. Continuous predictors
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odds ratios for more than 2 categories

weight No Disease disease

underweight 7 (63.64) 4 (36.36)

normal 69 (51.49) 65 (48.51)

overweight 97 (41.99) 134 (58.01)

obese 125 (51.23) 119 (48.77)

Categorical predictor (4 levels) + binary outcome (disease / no disease)
chi-square test is appropriate

p-value=0.11

Since this p-value is not significant (0.11>0.05) we would normally not calculate any effect measures (such as risk 
difference, relative risk or odds ratios). Will do it here to learn about odds ratios.
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odds ratios for more than 2 categories

weight No Disease disease

underweight 7 (63.64) 4 (36.36)

normal 69 (51.49) 65 (48.51)

overweight 97 (41.99) 134 (58.01)

obese 125 (51.23) 119 (48.77)

6 different OR can be calculated (corresponding to 6 different pairwise comparisons). 
Generally a good idea to limit how many OR we calculate by making choices for which comparisons we want to focus on. 

A “reference group” is a group that we choose to be the reference so that all odds ratios will be a comparison to the 
reference group.

Suppose choose normal as the reference group. Then we would compare underweight, overweight, and obese to normal
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odds ratios for more than 2 categories

weight Odds ratio (OR) Interpretation 

underweight 0.607 Less risk than normal weight

overweight 1.466 More risk than normal weight

obese 1.011 Approximately equal risk to normal weight

normal 1.000

Sometimes, but not always papers will include this to indicate normal is the reference group: which means the OR for 
normal is odds(normal)/odds(normal) which of course is 1
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Questions?
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Relationship between age and CAD

Age (in years) is linear so now we need to use logistic regression.

From the logistic regression model we get
Odds ratio = 1.073, p-value < 0.0001, 95% confidence interval (1.054,1.093)

interpretation
Older age is a significant risk for CAD
For every one year increase in age the odds is 1.073 times larger
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Logistic regression with all 3 predictors

Logistic regression allows us to look at all three predictors (sex, weight, and age) 
simultaneously.

Looking at relationships between each predictor and CAD separately is a good first 
step before proceeding to the full logistic regression model. It is important to 
understand these relationships first before looking at the full model. 
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Logistic regression results with all 3 predictors

Odds ratio P-value 95% confidence interval

sex (male vs female) 1.829 0.0007 (1.29,2.59)

Age (in years) 1.074 <0.0001 (1.015,1.095)

weight (obese vs normal) 1.225 0.4968 (0.780,1.952) 

weight (overweight vs normal) 1.513 0.0903 (0.959,2.386)

weight (underweight vs normal) 0.695 0.4008 (0.177,2.724)

Can look at either the p-values or check if 1 is in the confidence interval to determine significance 

conclusions
Male associated with increase risk of CAD
Risk of CAD increases with age with the odds increasing by 1.074 times for each one unit increase in age
Weight (with this categorization) not significantly associated risk of CAD
Same conclusions as we had with individual comparisons



31

A peak under the hood of the logistic regression model

One predictor: age  call X and one outcome  call this Y

Logistic regression model log 𝑃𝑃 𝑌𝑌=1|𝑋𝑋
𝑃𝑃 𝑌𝑌=0|𝑋𝑋

= b0 + b1X

Compare to linear regression model 𝑌𝑌 = 𝑏𝑏0 + 𝑏𝑏1𝑋𝑋 + 𝑒𝑒

Term inside the square brackets is the odds conditional on the value of X
Entire term on left side of equals sign is a log odds

𝑏𝑏1 is a log odds ratio  odds ratio is  OR = exp(𝑏𝑏1)

Note: here log is the natural log (with base e) which is some fields is written as ln(x)
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(default) output from logistic regression in SAS

log odds ratios p-values

Absence of 
female tells you 
that is the 
reference group

Absence of normal tells you 
that is the reference group
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Converting from log odds ratios to odds ratios

Odds ratio = exp(log odds ratio)

Example: to get the odds ratio for sex
Log odds ratio = 0.6037
Odds ratio = exp(0.6037) = 1.829



34

SAS output with both log odds ratios and odds ratios

odds ratioslog odds ratios

p-values (same for log odds ratios 
and odds ratios)
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Interpretation of odds ratio for age (from logistic)

Odds ratio = 1.074
Log odds ratio = log(1.074) = 0.072

For every 1 year increase in age the log odd increases by 0.072
 For every 10 year increase in age the log odds increases by 0.072 x 10 = 0.72

Exponentiate to get back on the odds scale
exp(0.72) = 2.05

 For every 10 year increase in age the odds doubles (i.e. twice the size)
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How to tell if values are log odds ratios or odds ratios

 Some statistical software is nice enough to actually label outcome as being either 
odds ratios or log odds ratios, but otherwise

 If any of the estimates are negative then values are log odds ratios (minimum value 
for an odds ratio is 0)

 If the confidence intervals are symmetric around the estimate (i.e. distance between 
the estimate and the bounds are the same for lower and upper limit) then values are 
log odds ratios (confidence intervals for odds ratios are not symmetric around the 
estimate)
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Questions?
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Compare linear and logistic regression

linear regression 
𝑌𝑌 = 𝑏𝑏0 + 𝑏𝑏1𝑋𝑋 + 𝑒𝑒

Y is a linear function of X

We estimate the values of 𝑏𝑏0 and 𝑏𝑏1

can then use the estimates and the model to make prediction about the value of Y for a 
given value of X.
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logistic: model dependence of Y on X through the log odds

logistic regression 

log
𝑃𝑃 𝑌𝑌 = 1|𝑋𝑋
𝑃𝑃 𝑌𝑌 = 0|𝑋𝑋

= b0 + b1X

Two reasons why it is good to know this.
1. the log part is why b1 is a log odds ratio not an odds ratio
2. model can be inverted (which means solved for P(Y=1|X)) and then used to 

estimate P(Y=1|X) for any X

Log odds
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Would usually use statistical software to calculate the inverse, so not necessary to 
know the function, but here it is

log
𝑃𝑃 𝑌𝑌 = 1|𝑋𝑋
𝑃𝑃 𝑌𝑌 = 0|𝑋𝑋

= log
𝑃𝑃 𝑌𝑌 = 1|𝑋𝑋

1 − 𝑃𝑃 𝑌𝑌 = 1|𝑋𝑋
= b0 + b1X

Invert: solve for P(Y=1|X)

𝑃𝑃 𝑌𝑌 = 1 𝑋𝑋 = exp 𝑏𝑏0+𝑏𝑏1𝑋𝑋
1+exp 𝑏𝑏0+𝑏𝑏1𝑋𝑋

(inverse function) 

Can now plug in any value of X to get P(Y=1|X)
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The inverse function is more complicated when we have multiple predictors (as in our 
example). 

But we can still use the logistic regression model to estimate the probability of disease 
for any combination of sex, weight, and age.

Example: If I wanted to compare probabilities of disease for overweight 30 year old 
men to women, using the logistic regression model.
Probability of disease for 30 year old overweight men is 0.21
Probability of disease for 30 year old overweight women is 0.13

(I used SAS to get these estimates from the model.)
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Conditions needed for logistic regression

 Outcome is binary (can be extended to multinomial, but model is more complicated 
and a bit more difficult to interpret)

 Sample size needs to be large (larger than required for linear regression)
necessary sample size is a function of
1. number of predictors (more predictors requires larger sample size)
2. probability values (close to 0 or 1 requires larger sample size)

Note: for linear regression sample size only needs to be large if the outcome is not 
normally distributed. 
For logistic regression the outcome is binary, so not possible to be normally distributed. 
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what you need to know to interpret results from logistic regression

 Direction of the outcome (is the model for the probability of disease or for the 
probability of no disease). 

When focus is on studying factors that increase the probability of disease we usually 
model the probability of disease (as we did in our example).
When focus is on studying factors that decrease the probability of disease then would 
usually model the probability of no disease.
However for statistical software there is usually a default choice which may or may not 
be the one you want. 
(you get the same conclusions, but need to know to interpret results)
 For each categorical variable what is the reference group? (there are other ways to 

specify a model that do not use the reference group coding)
 Are the results odds ratios or log odds ratios? 
 What are the scales for each continuous variable? For example, is age in years or 

some other unit
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Thank you

Questions?
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