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Presenter
Presentation Notes
Good afternoon. I’m Machelle Wilson. I’m a senior biostatistician with the Department of Public Health Sciences and the Clinical and Translational Science Center. Today we’ll be talking about more extensive modeling of survival data that goes beyond what we can do with Kaplan Meier curves or log-rank tests. 



Cox Proportional Hazard Models

We are video recording this seminar so 
please hold questions until the end.

Thanks

Presenter
Presentation Notes
We are video recording so we like to hold questions for the end, but please feel free to ask a question if you feel it really needs to be answered in order to move forward in understanding the concepts. 



When to use Survival Analysis

• We use the techniques of survival 
analysis when the time to the event of 
interest is observed over varying 
lengths of time.

• And when some of our subjects are 
censored, e.g., lost to follow up, or the 
study ends before the event occurs.

Presenter
Presentation Notes
Just to recap briefly what we learned last time and summarize the basic situation we’ll focus on this time:



When Not to use Survival Analysis

• For example, if we are interested in the 
3 year recurrence rate for liver cancer, 
and we have observed everyone in our 
sample for 3 years, then we don’t need 
survival analysis. 
• We can use standard binomial methods 

like chi square or Fisher’s exact test to 
compare the different proportions of 
those who recurred for the treatment 
versus the control.

Presenter
Presentation Notes
So, we would simply calculate the proportion who survived for at least 3 years for the treatment and control groups and test to see if the proportions are significantly different using the chi square test. 




When not to use Survival 
Analysis
• For example, in a study on alcoholism 

treatments, if all patients eventually 
relapsed during the course of the study, 
we don’t need survival analysis.
• We would calculate the median time to 

first drink and compare the medians 
using the Kruskal-Wallis test. 

Presenter
Presentation Notes
Or, for a study on alcoholism treatments, if all patients relapsed, we would calculate the median time to first drink and compare the medians using the Kruskal-Wallis test. 




How the data look

Presenter
Presentation Notes
Every patient has a time 0, but not all patients are observed until the event occurs. 



How to Set Up the Data File

Presenter
Presentation Notes
We need a ‘time’ variable that records either the time to the event or the time to censoring. We need a censoring variable that records whether the event was observed or censored. And we need the values of the covariates of interest. 



Limitations of KM Curves and 
Log-Rank Tests
• We can only test one variable at a time.

• We cannot control for potential 
confounders.

• We cannot control for potential clustering 
in the data.

• We cannot control for other potential risk 
factors. 

• We cannot include interaction terms. 

Presenter
Presentation Notes
Confounders: If we are using observational data, we would want to include in our model any variables that could be related to both the probability of the event and the value of our primary covariate. 
For example, if we’re looking at time to relapse from cancer data in the EMR (observational data, not experimental) and our primary question is whether use of alternative medicine treatments affects relapse rates; and we know that use of alternative medicine is associated with socioeconomic status, then we would want to include SES in our model.
Clustering: For example, we may have patients from several different clinics. The clinics are ‘clusters’ that need to be ‘blocked’ to control for effects due to clinic.
Other risk factors: We may simply want to test several risk factors simultaneously.
Interaction terms: For example, we may suspect that the sexes respond differently to the treatment. An interaction term would allow us to test this.



Limitations of KM Curves and 
Log-Rank Tests
• Quantitative risk factors need to be 

categorized to form the strata. 
• For example, serologies, BMI, bone 

density into ‘low’, ‘normal’, ‘high’. 
• Cut-offs might not be

• Straightforward
• Clinically established
• Meaningful.

Presenter
Presentation Notes
For example, if we want to test age using the log-rank test, we would need to categorize our patients in decades or young, middle-aged, old. 
Other examples are blood tests, BMI, bone density, etc.
Some of these may have cut-offs that are intuitive and recognized in the clinical community, but maybe not. 



Limitations of KM Curves and 
Log-Rank Tests
• If there are many levels, the number of strata 

can become so large that the number of 
patients in some of the strata is quite small 
(<10). 
• This results is low power for the stratified test, i.e., 

our test will likely be non-significant even when 
there are real differences, 

• Or even with inaccurate p-values due to lack of 
asymptotic convergence.

Presenter
Presentation Notes
In the age example, if you categorize into decades and your sample ranges from 20 to 90, then you have 7 categories. This may lead to few patients in some of the categories.
So not a lot of information about patients in the categories with low counts, i.e., low power.
P-values are based on an assumption of moderate to large sample sizes and become inaccurate when the number of observations in a cell are small. 



Limitations of KM Curves 
and Log-Rank Tests

•That is, we may want to use 
continuous variables in our 
model. 

•We can’t do this with KM 
curves. 

Presenter
Presentation Notes
So, these issues can be resolved by using continuous variables. Continuous variables do not create the issue of too few observations per cell, arbitrary cut-offs, etc.



Limitations of KM Curves and 
Log-Rank Tests
• Finally, the log-rank test only provides an 

estimate of the weight of evidence that the 
strata are different in their risk, not the 
magnitude of the difference. 
• That is, a small p-value will tell us that the strata 

are different, but does not give us a quantified 
estimate of how the risk changes across the 
categories. 

• We can look at proportions and quantiles as we 
saw last time, but we can’t get an integrated, 
quantified estimate from the test.

Presenter
Presentation Notes
As we saw last time, it’s awkward to report the actual effect sizes from the log-rank test. Something simpler, integrated, and quantified would be more useful.



The Cox Proportional Hazard 
Model
• The Cox proportional hazard model provides the 

following benefits:
• Adjusts for multiple risk factors simultaneously.
• Allows quantitative (continuous) risk factors, 

helping to limit the number of strata. 
• Provides estimates and confidence intervals of 

how the risk changes across the strata and across 
unit increases in quantitative variables.

• Can handle data sets with right censoring, 
staggered entry, etc.; so long as we have adequate 
data at each time point. 

Presenter
Presentation Notes
So, we have several advantages to using the CPH model.
The model can be multivariable as in any regression model.
We can use age, bmi, serologies, etc., in their original units rather than stratifying them.
The model uses the data to fit the hazard ratio, similar to relative risk, to estimate the effect of a risk factor, along with the corresponding confidence interval.
Is set up to deal with the typical issues of survival data.



The Cox Proportional Hazard 
Model
• The hazard function for the CPH model can be 

written:

• ℎ 𝑡𝑡 = lim
𝛿𝛿→0

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 event occurs before 𝑡𝑡+𝛿𝛿 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡 ℎ𝑎𝑎𝑎𝑎 𝑒𝑒𝑝𝑝𝑡𝑡 𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜𝑝𝑝𝑒𝑒𝑜𝑜 𝑎𝑎𝑡𝑡 𝑡𝑡)
𝛿𝛿

.

• This can be interpreted as the instantaneous event 
rate at time t, given the event has not happened 
before t.

• The proportional hazard function has the form:
• ℎ 𝑡𝑡 = ℎ0 𝑡𝑡 𝑒𝑒𝑒𝑒𝑒𝑒 𝛽𝛽1𝑒𝑒1 + ⋯+ 𝛽𝛽𝑝𝑝𝑒𝑒𝑝𝑝
• Where ℎ0 is the baseline hazard rate, i.e, x1=0, 

x2=0, etc. 

Presenter
Presentation Notes
That is the hazard function estimates the probability that the event occurs between time t and time t+delta, as delta goes to zero.  I.e. the instantaneous probability of the event. 

Xs take on the value 1 or 0 to indicate the presence/absence of the risk factor. The betas are used to estimate the effect of the risk factor on the hazard. 

The baseline hazard function is the hazard function where all the Xs=0. So, for example, if we code x=0 as the risk factor is absent and x=1 as the risk factor is present, then the baseline hazard function is the hazard when no risk factors are present. 



The Cox Proportional Hazard 
Model
• Note that the ratio of 2 hazard functions does not 

depend on t. 
• To see this, consider a hazard function with only 1 

risk factor, X, that has two strata, a and b.
• Then

• 𝒉𝒉 𝒕𝒕 𝑿𝑿 = 𝒂𝒂 = 𝒉𝒉𝟎𝟎 𝒕𝒕 𝒆𝒆𝒆𝒆𝒆𝒆(𝜷𝜷𝒂𝒂) and 
𝒉𝒉 𝒕𝒕 𝑿𝑿 = 𝒃𝒃 = 𝒉𝒉𝟎𝟎 𝒕𝒕 𝒆𝒆𝒆𝒆𝒆𝒆(𝜷𝜷𝒃𝒃).

• The ratio is then 𝒆𝒆𝒆𝒆𝒆𝒆(𝜷𝜷𝒂𝒂)
𝒆𝒆𝒆𝒆𝒆𝒆(𝜷𝜷𝒃𝒃)

, which does not depend on t. 

Presenter
Presentation Notes
This is why the model is called the ‘proportional hazard’ model. The hazards remain proportional across time. This aspect of the model is built into the math.



The Cox Proportional Hazard 
Model

https://altis.com.au/a-crash-course-in-survival-analysis-customer-churn-part-iii/

Presenter
Presentation Notes
The left shows what the hazard functions look like for two different values of a risk factor that remain proportional over time, and the right shows the hazard functions that do not remain proportional over time. 



The Cox Proportional Hazard 
Model
• The hazard ratio is akin to relative risk. 

• But instead of a ratio of cumulative risk, it’s an 
estimate of the ratio of the hazard rate 
(instantaneous risk) between two groups. 

• The CPH model is a semi-parametric model. This 
means that the model does not make assumptions 
about the distribution of the baseline hazard 
function;

• But it does have some assumptions that we must 
account for if we want our inference (i.e., our p-
values) to be valid. 

Presenter
Presentation Notes
It will probably be intuitive to think of the hazard ratio as similar to relative risk.
We don’t have to worry about things like normality of the data.
But we do need to verify a few things to make sure our inference (inferring from our sample to the population) is valid. 



Assumptions of the Cox 
Proportional Hazard Model
• Assumption 1: Independent observations.

• This assumption means that there is no 
relationship between the subjects in your data set 
and that information about one subject’s survival 
does not in any way inform the estimated survival 
of any other subject.

• That is, they are not related to each genetically or 
in other types of ‘clusters’, such as health care 
systems, neighborhoods, places of work, etc.

• This is a key assumption in most statistical 
models. 

Presenter
Presentation Notes
1) --
2) For example, if there is a genetic component to survival and we have sampled twins, then if we observe one twin’s survival time we have about a 50% improvement in our ability to predict the second twin’s survival time.



Assumptions of the Cox 
Proportional Hazard Model
• Assumption 2: Non-informative or Independent 

censoring.
• This assumption is satisfied when there is no 

relationship between the probability of censoring 
and the event of interest. 

• For example, in clinical trials, we should carefully 
assess that loss of follow-up does not depend on 
the patient’s health.

• Violations of this assumption invalidate the 
estimates and p-values of the CPH model. 

Presenter
Presentation Notes
For example, if sicker patients are more likely to drop out of the trial and more likely to die, then we do not have independent censoring. 



Assumptions of the Cox 
Proportional Hazard Model
• Assumption 3: The survival curves for two different 

strata of a risk factor must have hazard functions 
that are proportional over time. 
• This assumption is satisfied when the change in 

hazard from one category to the next does not 
depend on time.

• That is, a person in one stratum has the same 
instantaneous relative risk compared to a person 
in a different stratum, irrespective of how much 
time has passed. 

• This why the model is called the proportional
hazards model. 



Checking the Assumptions of the 
CPHM
• The independent observations assumption:

• This assumption is validated by implementing 
good experimental design and sampling.

• For example, if patients are enrolled from 
different clinics or health systems, a variable that 
identifies which clinic the patient was sampled 
from is included in the model. 

• Families and relatives are not sampled together.
• The data are examined for other possible clusters 

such as neighborhoods, places of work, etc., and, if 
they exist, are included in the model. 



Checking the Assumptions of the 
CHPM
• The independent censoring assumption:

• This assumption is mainly checked by thinking carefully 
about the nature of the censoring process and how it is 
related to the event of interest. 

• Examples of violations are: 
• Age is related to treatment tolerance. 
• Those without insurance are more likely to be lost to 

follow up and to die sooner. 
• Very sick patients are likely to transfer to a different 

health system.
• Relatively healthy patients are likely to be unmotivated 

to complete the study. 

Presenter
Presentation Notes
Age: if the elderly are both more likely to die and more likely to drop out of the study because they can’t tolerate the treatment, then censoring is not independent of the probability of dying, so the assumption is invalid.





Checking the Assumptions of the 
CPHM
• The independent censoring assumption:

• Most of the examples of violations in the previous 
slide can be corrected by controlling for the 
covariate in the model, 
• For example including age or insurance status as 

covariates.
• Or choosing appropriate exclusion criteria, 

• For example not allowing heart failure patients to 
be included in a cancer treatment study.



Checking the Assumptions of the 
CHPM
• The proportional hazards assumption:

• This assumption is checked in three main ways
• Graphical examination of KM curves to confirm 

they do not cross. 
• Graphical examination of log(-log(survival)) 

versus log(survival time) to confirm the curves 
are roughly parallel.

• Including time dependent covariates in the 
model to test for significance. Time dependent 
covariates take the form of interaction terms 
between log(time) and the covariate.

• These tests are very easy to perform using SAS® 
software.



Example data set: AIDS

• Recall the data from last time from the AIDS 
Clinical Trials Group (ACTG).
• The data are from a double-blind, 

randomized trial that compared a three-
drug regimen with a two drug regimen. 

• The primary outcome was time to AIDS 
diagnosis or death.

• We will continue with these data to see 
how to test the assumptions and fit the 
model. 



Checking Proportional Hazard 
Assumption
• Recall the code for generating KM curves:

KM and 
log(-log(survival) curves

Variable to be 
tested

Suppresses table 
of failure times



Checking Proportional Hazards 
Assumption
• Do the KM curves cross? 



Example of Crossed KM 
curves

https://www.sciencedirect.com/science/article/pii/S0169260707001861



Checking Proportional Hazards 
Assumption
• Are the log(-log(survival)) versus log(time) curves 

parallel?



SAS code for time dependent 
covariates

Time 
dependent 
covariates

Defining 
TDCs

Calling the test

Primary covariates



Checking Proportional Hazards 
Assumption
• Are the log(time)*covariate interaction terms non-

significant?

Type 3 Tests

Effect DF
Wald Chi-

Square Pr > ChiSq
Tx 1 0.0014 0.9704
CD4strat 1 2.4234 0.1195
age 1 0.3844 0.5352
ivdrug 1 0.2049 0.6508
race 3 3.7020 0.2955
tx_t 1 0.9384 0.3327
cd4_t 1 0.0112 0.9158
age_t 1 1.5761 0.2093
ivdrug_t 1 0.0008 0.9771
race_t 1 0.0000 0.9984

P-values for 
time 

dependent 
covariates



Checking Proportional Hazards 
Assumption
• Is the overall test non-significant?

Linear Hypotheses Testing Results

Label
Wald

Chi-Square DF Pr > ChiSq
proportionality_test 2.5328 5 0.7715

P-value for 
overall test of 
proportional 

hazards 
assumption



SAS code for Final Model
• The final model:

PROC FORMAT makes 
for nicer tables

Formatting 
tables

Declaring 
class 

variables

Specifying 
the model



Interpreting the Output
• The less important tables:

Model Information
Data Set WORK.AIDS

Dependent Variable time_AIDS time_AIDS

Censoring Variable censor censor

Censoring Value(s) 0

Ties Handling BRESLOW

Number of Observations Read
Number of Observations Used

1147
1147

Summary of the Number of Event 
and Censored Values

Total Event Censored
Percent

Censored
1147 95 1052 91.72

Convergence Status
Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Criterion
Without

Covariates
With

Covariates
-2 LOG L 1302.574 1236.528
AIC 1302.574 1250.528
SBC 1302.574 1268.405

Testing Global Null Hypothesis: BETA=0
Test Chi-Square DF Pr > ChiSq
Likelihood Ratio 66.0456 7 <.0001
Score 67.3920 7 <.0001
Wald 60.2152 7 <.0001

Class Level Information

Class Value
Design 

Variables
Tx IDV 0

No IDV 1

CD4strat GT 50 0
LE 50 1

ivdrug never 0
previously 1

race Black 1 0 0
Hispanic 0 1 0
Other 0 0 1
White 0 0 0

Presenter
Presentation Notes
Model Info: check data set and dependent variable
Class level: check correct number of strata
Model fit: only used for model selection procedures, which we won’t cover
Global hypothesis: Is at least one covariate significant.

Only if asked: Ties need to be handled because each person contributes to the likelihood individually, which includes summing up the hazard functions for all subjects who are at risk at the moment at which the event occurs. If 2 subjects experience the event at the same time, then it’s unclear if subject A should be considered at risk while subject B is experiencing the event or vice versa. There are various choices for handling ties. SAS using Breslow by default. 




The Important Tables
• The Type 3 Tests table gives a summary of the Chi 

square test results with the statistic and the p-value.
• The chi square test is testing for evidence of any 

difference in the survival functions across all strata for 
categorical variables or for a unit increase for 
continuous variables.

• The Parameter Estimates table gives 
• the hazard ratios (HR) ,
• 95% confidence intervals, 
• p-values for tests for differences for each stratum 

compared to the reference group. 

Presenter
Presentation Notes
Chi square test: if there are 2 strata then test is testing for differences between the 2 strata. If there are more than 2 strata it’s testing for any difference between any 2 of the multiple strata. Or for change in hazard for a unit increase in continuous variable.
Tests are testing for differences in hazard function from reference group. We’ll see this in the next slide. 




The Important Tables
• The Type 3 Tests and Parameter Estimates:

Type 3 Tests

Effect DF
Wald Chi-

Square Pr > ChiSq
Tx 1 11.2353 0.0008
CD4strat 1 40.1724 <.0001
age 1 5.6347 0.0176
ivdrug 1 2.9345 0.0867
race 3 4.8431 0.1837

Analysis of Maximum Likelihood Estimates

Parameter DF
Parameter

Estimate
Standard

Error Chi-Square Pr > ChiSq
Hazard

Ratio Label
Tx No IDV 1 0.72843 0.21732 11.2353 0.0008 2.072 Treatment No IDV
CD4strat LE 50 1 1.43680 0.22669 40.1724 <.0001 4.207 CD4strat LE 50
age 1 0.02685 0.01131 5.6347 0.0176 1.027 age
ivdrug previously 1 -0.58009 0.33863 2.9345 0.0867 0.560 ivdrug previously
race Black 1 -0.25652 0.26234 0.9561 0.3282 0.774 race Black
race Hispanic 1 0.17988 0.26711 0.4535 0.5007 1.197 race Hispanic
race Other 1 0.84586 0.52256 2.6202 0.1055 2.330 race Other

The 
meat of 

the 
analysis

The reference 
group is the 

category that’s 
missing

Presenter
Presentation Notes
Race: compare other reference group if Type 3 test were significant.



Interpreting the Hazard Ratio
• The hazard ratio is literally the ratio of the hazard 

functions.
• The hazard ratio is similar to relative risk, but differs in 

that the HR is the instantaneous risk rather than the 
cumulative risk over the entire study.

• Simply, the HR(A, B) is the chance of an event occurring 
for stratum A divided by the chance of the event 
occurring for stratum B.

• For continuous variables, the HR is the ratio of the 
chance of the event at a given value to the chance at that 
value plus 1.
• For example, the HR=1.027 for age means that a person of 

age 26 has a 2.7% higher risk (or hazard) of death or 
developing AIDS than a person of age 25. 



Interpreting the Hazard Ratio
• Note that while the HR is the instantaneous risk at 

time t, the proportional hazard assumption means 
that this risk is the same no matter the value of t. 

• Also note that because we have not specified any 
interactions or higher order transformations with 
age, the increase in risk from age 25 to 26 is the 
same as the increase in risk from age 40 to 41. 

• The farther the HR is from 1, the larger the 
difference between the two groups. 

• The smaller the p-value is the stronger the weight of 
evidence that the two groups are different. 



Help is Available
• CTSC Biostatistics Office Hours

• Every Tuesday from 12 – 1:30 in Sacramento
• Sign-up through the CTSC Biostatistics Website

• EHS Biostatistics Office Hours
• Every Monday from 2-4 in Davis

• Request Biostatistics Consultations
• CTSC - www.ucdmc.ucdavis.edu/ctsc/
• MIND IDDRC -

www.ucdmc.ucdavis.edu/mindinstitute/centers/iddrc/cores/bbrd.html

• Cancer Center and EHS Center
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