

Introduction to Causal Inference

CLINICAL AND TRANSLATIONAL SCIENCE CENTER

Ezra Morrison, Ph.D.

Assistant Professor of Biostatistics

UC Davis School of Medicine

Learning Objectives

- 1. Define causes and effects
- 2. Understand how causal inference is used in medical research
- 3. Define confounding and understand how it makes causal inference difficult
- Understand how to select study design and analysis methods to answer causal questions

Potential outcomes

- A potential outcome is the outcome that an individual would experience if we intervene to give them a particular treatment or exposure.
- Denoted Y(x); may or may not be the outcome that actually occurs, Y

Example: phototherapy for neonatal jaundice

- Example: treating neonatal jaundice (excess bilirubin) with light exposure ("phototherapy")
 - Outcome (Y): 1 = condition worsens within 48 hours; 0 = not.
 - Treatment (X): 1 = phototherapy; 0 = watchful waiting
 - Y(1): if we choose phototherapy, will the jaundice worsen?
 - Y(0): if we choose watchful waiting, will the jaundice worsen?
- Data set: 20,731 newborns at 12 NorCal Kaiser hospitals between 1995-2004, with bilirubin levels within 3mg/dL of the guideline threshold for phototherapy
 - (Newman et al, Pediatrics 2009; https://doi.org/10.1542/peds.2008-1635)
- Analysis: Vittinghoff et al, Regression Methods in Biostatistics 2e, 2012, Springer
 - https://link.springer.com/book/10.1007/978-1-4614-1353-0

Defining causes

- "x causes y" if:
 - -y would occur if we did x, and
 - y would not occur if we did some alternative to x
- If a given infant would recover with phototherapy and not with watchful waiting, then phototherapy causes recovery for that infant.
- Y(x) = y and $Y(x') \neq y$ for some $x' \neq x$
- Necessary cause: y would not occur for any alternative to x.
- Sufficient cause: y would occur if we did x, no matter what else we also did.

Defining effects

- The effect of an intervention on an individual is a comparison between the potential outcomes for that intervention and some alternative: Y(1) versus Y(0).
 - Difference in potential outcomes: Y(1) Y(0)
 - Potential outcomes ratio: $\frac{Y(1)}{Y(0)}$
 - Relative difference in potential outcomes: $\frac{Y(1)-Y(0)}{Y(0)}$

Average effects

- E[Y(x)]: Average potential outcome of treatment x for a population of individuals
- E[Y(x) Y(x')]: Average Treatment Effect (ATE) or Average Causal Effect (ACE)
- E[Y(x)|Z=z]: Average potential outcome of treatment x in subpopulation Z=z
- E[Y(1) Y(0)|X = 1]: "Average Treatment effect among the Treated" (ATT)
- For binary outcomes with Y = 1 denoting the adverse event:
 - Potential risk: P(Y(x) = 1) = E[Y(x)]
 - Causal risk difference: $P(Y(x) = 1) P(Y(x') = 1) = \mathbb{E}[Y(x) Y(x')]$
 - Causal risk ratio: $P(Y(x) = 1) / P(Y(x^*) = 1)$
 - Causal odds ratio:

$$\frac{P(Y(x) = 1)/P(Y(x) = 0)}{P(Y(x') = 1)/P(Y(x') = 0)}$$

Calculating effects

- Suppose we have data on 10 individuals (e.g., newborns with jaundice)
- We would like to estimate the average potential outcomes and average causal effect:

$$-\hat{E}[Y(1)] = \frac{1}{n} (Y_1(1) + Y_2(1) + \dots + Y_{10}(1))$$

$$- \hat{E}[Y(1) - Y(0)] = \hat{E}[Y(1)] - \hat{E}[Y(0)]$$

• What do we know about Y(1) and Y(0)?

X	Y	Y (1)	<i>Y</i> (0)
0	1	?	?
0	1	?	?
0	0	?	?
0	1	?	?
0	1	?	?
1	0	?	?
1	1	?	?
1	1	?	?
1	0	?	?
1	1	?	?

- Q1: Are the observed treatments the same as the potential interventions we are interested in?
 - How long is phototherapy applied?
 - How bright is the light?
 - "Consistency assumption": If X = x, then Y(x) = Y
- Q2: does treating one individual affect any other individuals?
 - Vaccinating one individual can protect others
 - Educating one individual can affect others
 - "Non-interference assumption"
- Consistency + Non-interference = "Stable Treatment Value Assumption" (SUTVA)

• If we assume consistency and noninterference, we can fill in half of the potential outcomes:

X	Y	Y (1)	Y (0)
0	1	?	?
0	1	?	?
0	0	?	?
0	1	?	?
0	1	?	?
1	0	?	?
1	1	?	?
1	1	?	?
1	0	?	?
1	1	?	?

• If we assume consistency and noninterference, we can fill in half of the potential outcomes:

• For
$$X = 0$$
, $Y(0) = Y$

X	Y	<i>Y</i> (1)	Y (0)
0	1	?	1
0	1	?	1
0	0	?	0
0	1	?	1
0	1	?	1
1	0	?	?
1	1	?	?
1	1	?	?
1	0	?	?
1	1	?	?

• If we assume consistency and noninterference, we can fill in half of the potential outcomes:

• For
$$X = 0$$
, $Y(0) = Y$

• For
$$X = 1$$
, $Y(1) = Y$

X	Y	Y (1)	Y (0)
0	1	?	1
0	1	?	1
0	0	?	0
0	1	?	1
0	1	?	1
1	0	0	?
1	1	1	?
1	1	1	?
1	0	0	?
1	1	1	?

The Fundamental Problem of Causal Inference

- Even assuming consistency and noninterference:
 - We are still missing half of the potential outcomes
 - No rows are complete
- If we want to estimate average potential outcomes and risk differences, we need to decide what to do about the missing potential outcomes.

X	Y	Y (1)	<i>Y</i> (0)
0	1	?	1
0	1	?	1
0	0	?	0
0	1	?	1
0	1	?	1
1	0	0	?
1	1	1	?
1	1	1	?
1	0	0	?
1	1	1	?

Analysis 1: Assume treatment is randomized

• We could assume observed treatments are completely random, or at least, assume that the observed treatments are **independent** of the potential outcomes (i.e., $Y(x) \perp \!\!\! \perp X$) (an independence assumption). Then:

•
$$E[Y(1)|X = 0] = E[Y(1)] = E[Y(1)|X = 1] = E[Y|X = 1]$$

•
$$\hat{E}[Y|X=1] = \frac{1}{5}(0+1+0+1+1) = \frac{3}{5}$$

•
$$\hat{E}[Y(1)] = \frac{1}{10} \left[\left(5 \times \frac{3}{5} \right) + 3 \right] = \frac{3}{5} = 60\%$$

X	Y	Y (1)	Y (0)
0	1	3/5	1
0	1	3/5	1
0	0	3/5	0
0	1	3/5	1
0	1	3/5	1
1	0	0	?
1	1	1	?
1	1	1	?
1	0	0	?
1	1	1	?

Analysis 1: Assume treatment is randomized

• Similarly: E[Y(0)|X = 1] = E[Y(0)] = E[Y(0)|X = 0] = E[Y|X = 0]

$$\hat{\mathbf{E}}[Y|X=0] = \frac{1}{5}(1+1+0+1+1) = \frac{4}{5}$$

•
$$\hat{E}[Y(0)] = \frac{1}{10} \left[4 + \left(5 \times \frac{4}{5} \right) \right] = \frac{4}{5} = 80\%$$

$$\hat{\mathbf{E}}[Y(1) - Y(0)] = \hat{\mathbf{E}}[Y(1)] - \hat{\mathbf{E}}[Y(0)]$$
$$= \frac{3}{5} - \frac{4}{5} = -\frac{1}{5} = -20\%$$

 Given our assumptions, we would estimate that treatment 1 (phototherapy) reduces the risk of worsening jaundice by 20 percentage points.

X	Y	Y (1)	Y (0)
0	1	3/5	1
0	1	3/5	1
0	0	3/5	0
0	1	3/5	1
0	1	3/5	1
1	0	0	4/5
1	1	1	4/5
1	1	1	4/5
1	0	0	4/5
1	1	1	4/5

Analyzing the phototherapy data, assuming observed treatment is completely random

	Condition Worsened $(Y = 1)$	Condition Stabilized or Improving $(Y = 0)$	All
Phototherapy $(X = 1)$	15 (0.3%)	4569 (99.7%)	4584 (22%)
Watchful Waiting $(X = 0)$	113 (0.7%)	16,034 (99.3%)	16,147 (78%)
All	128 (0.6%)	20,603 (99.4%)	20,731

Under our assumptions (consistency, no interference, observed treatment is independent of the potential outcomes):

- Estimated Causal Risk (of jaundice worsening if we choose phototherapy) = $\hat{P}[Y(1) = 1] = 0.3\%$
- Estimated Causal Risk (of jaundice worsening if we choose waiting) = $\widehat{P}[Y(0) = 1] = 0.7\%$
- Estimated Causal Risk Difference = 0.3% 0.7% = -0.4%

That is, we estimate that giving phototherapy to all cases would reduce the event rate by 0.4%

Not-completely-random treatment assignment

- Maybe, the pattern of observed treatments is not completely random
- Maybe, the infants who received phototherapy have different characteristics than those who were treated with watchful waiting

Gestational Age and Phototherapy

	Watchful Waiting $(X = 0)$	Phototherapy $(X = 1)$	All
Gestational Age \leq 37 weeks $(Z = 0)$	4240 (69%)	1900 (31%)	6140 (30%)
Gestational Age > 37 weeks $(Z = 1)$	11,907 (82%)	2684 (18%)	14,591 (70%)
All	16,147 (78%)	4584 (22%)	20,731

Non-random treatment assignment

- We know X is not independent of Z
- We're not sure if $Y(x) \perp \!\!\! \perp X$
- Suppose Z indicates the gestational age of the infant, categorized:
 - -Z = 0 if gest. age ≤ 37 weeks
 - -Z = 1 if gest. age > 37 weeks
- 2 of 5 infants who received phototherapy had gest. age > 37 weeks, versus 3 of 5 of infants who did not receive phototherapy
- Does it still make sense to just average the observed outcomes from all the phototherapy infants together?

Z	X	Y	Y (1)	Y (0)
0	0	1	?	1
0	0	1	?	1
1	0	0	?	0
1	0	1	?	1
1	0	1	?	1
0	1	0	0	?
0	1	1	1	?
0	1	1	1	?
1	1	0	0	?
1	1	1	1	?

- Maybe we are willing to assume that the observed treatment is being randomly chosen, conditional on gestational age Z; (mathematically: Y(x) ⊥ X|Z). This is called a "conditional independence" assumption (or "conditional exchangeability" or "ignorability")
- Then:

$$E[Y(1)|Z = 0, X = 0] = E[Y(1)|Z = 0, X = 1]$$

= $E[Y|Z = 0, X = 1]$

Z	X	Y	Y (1)	Y (0)
0	0	1	2/3	1
0	0	1	2/3	1
1	0	0	?	0
1	0	1	?	1
1	0	1	?	1
0	1	0	0	?
0	1	1	1	?
0	1	1	1	?
1	1	0	0	?
1	1	1	1	?

- Maybe we are willing to assume that the observed treatment is being randomly chosen, conditional on gestational age Z; (mathematically: Y(x) ⊥ X|Z). This is called a "conditional independence" assumption (or "conditional exchangeability" or "ignorability")
- Then:

$$E[Y(1)|Z = 1, X = 0] = E[Y(1)|Z = 1, X = 1]$$

= $E[Y|Z = 1, X = 1]$

Z	X	Y	<i>Y</i> (1)	<i>Y</i> (0)
0	0	1	2/3	1
0	0	1	2/3	1
1	0	0	1/2	0
1	0	1	1/2	1
1	0	1	1/2	1
0	1	0	0	?
0	1	1	1	?
0	1	1	1	?
1	1	0	0	?
1	1	1	1	?

- Maybe we are willing to assume that the observed treatment is being randomly chosen, conditional on gestational age Z; (mathematically: Y(x) ⊥ X|Z). This is called a "conditional independence" assumption (or "conditional exchangeability" or "ignorability")
- Then:

$$E[Y(0)|X = 1, Z = 0] = E[Y(0)|X = 0, Z = 0]$$

= $E[Y|X = 0, Z = 0]$

Z	X	Y	Y (1)	<i>Y</i> (0)
0	0	1	2/3	1
0	0	1	2/3	1
1	0	0	1/2	0
1	0	1	1/2	1
1	0	1	1/2	1
0	1	0	0	2/2
0	1	1	1	2/2
0	1	1	1	2/2
1	1	0	0	?
1	1	1	1	?

- Maybe we are willing to assume that the observed treatment is being randomly chosen, conditional on gestational age Z; (mathematically: Y(x) ⊥ X|Z). This is called a "conditional independence" assumption (or "conditional exchangeability" or "ignorability")
- Then:

$$E[Y(0)|X = 1, Z = 1] = E[Y(0)|X = 0, Z = 1]$$

= $E[Y|X = 0, Z = 1]$

Z	X	Y	<i>Y</i> (1)	<i>Y</i> (0)
0	0	1	2/3	1
0	0	1	2/3	1
1	0	0	1/2	0
1	0	1	1/2	1
1	0	1	1/2	1
0	1	0	0	2/2
0	1	1	1	2/2
0	1	1	1	2/2
1	1	0	0	2/3
1	1	1	1	2/3

• Once we have imputed all of the Y(1)s and Y(0)s, we can estimate $\hat{E}[Y(0)]$ and $\hat{E}[Y(1)]$:

•
$$\widehat{E}[Y(1)] = \frac{1}{10} \left[\left(\frac{2}{3} \times 2 \right) + \left(\frac{1}{2} \times 3 \right) + 2 + 1 \right] = .58$$

Z	X	Y	Y (1)	Y(0)
0	0	1	2/3	1
0	0	1	2/3	1
1	0	0	1/2	0
1	0	1	1/2	1
1	0	1	1/2	1
0	1	0	0	2/2
0	1	1	1	2/2
0	1	1	1	2/2
1	1	0	0	2/3
1	1	1	1	2/3

• Once we have imputed all of the Y(1)s and Y(0)s, we can estimate $\hat{E}[Y(0)]$ and $\hat{E}[Y(1)]$:

•
$$\widehat{E}[Y(1)] = \frac{1}{10} \left[\left(\frac{2}{3} \times 2 \right) + \left(\frac{1}{2} \times 3 \right) + 2 + 1 \right] = .58$$

•
$$\widehat{E}[Y(0)] = \frac{1}{10} \left[2 + 2 + \left(\frac{2}{2} \times 3 \right) + \left(\frac{2}{3} \times 2 \right) \right] = .83$$

•
$$\hat{E}[Y(1) - Y(0)] = .58 - .83 = -.25$$

 Compare with what we got from the unstratified analysis:

$$\hat{E}[Y(1) - Y(0)] = .6 - .8 = -.20$$

Z	X	Y	Y (1)	Y (0)
0	0	1	2/3	1
0	0	1	2/3	1
1	0	0	1/2	0
1	0	1	1/2	1
1	0	1	1/2	1
0	1	0	0	2/2
0	1	1	1	2/2
0	1	1	1	2/2
1	1	0	0	2/3
1	1	1	1	2/3

Gestational Age, Phototherapy, and Worsened Jaundice

		Condition Stabilized or Improving $(Y = 0)$	Condition Worsened $(Y = 1)$	All	All
$\begin{aligned} \text{Gestational Age} & \leq 37 \\ \text{weeks} \\ (Z = 0) \end{aligned}$	Watchful Waiting $(X = 0)$	4154 (98.0%)	86 (2.0%)	4240 (69%)	6140
	Phototherapy $(X = 1)$	1890 (99.5%)	10 (0.5%)	1900 (31%)	(30%)
Gestational Age > 37 weeks (Z = 1)	Watchful Waiting $(X = 0)$	11,880 (99.8%)	27 (0.2%)	11,907 (82%)	14,591
	Phototherapy $(X = 1)$	2679 (99.8%)	5 (0.2%)	2684 (18%)	(70%)
All		20,603 (99.4%)	128 (0.6%)		20,731

Estimated causal risk of phototherapy = 0.3%Estimated causal risk of waiting = 0.8% Estimated Causal Risk Difference from Stratified Analysis = -.5% (Estimated Causal Risk Difference from Unstratified Analysis = -.4%)

Analysis 3: Regression

- What if Z is a numeric variable, e.g., gestational age measured in weeks?
- Stratification likely won't work: there aren't any rows with Z = 37 and X = 0 that we can use to estimate E[Y|Z = 37, X = 0].
- We could categorize Z as we did before, but maybe we need Z in its continuous form to justify $Y \perp \!\!\! \perp X(x)|Z$.
- However, we can still estimate E[Y|Z=37, X=0] by fitting a regression model!

Z	X	Y	Y (1)	Y (0)
36	0	1	?	1
35	0	1	?	1
38	0	0	?	0
40	0	1	?	1
39	0	1	?	1
35	1	0	0	?
37	1	1	1	?
36	1	1	1	?
40	1	0	0	?
38	1	1	1	?

Assumptions for Causal Regression Modeling

Still need conditional independence:
V(x) | V|Z

$$Y(x) \perp \!\!\! \perp X|Z$$

- Still need consistency and non-interference
- Need all treatment options to be possible for every possible value of Z:

$$0 < P(X = 1|Z = z) < 1$$

- Called "positivity assumption"; more of a practical requirement: if there some observations with X=1 and Z=33 but none with X=0 and $Z\approx33$, then how can we reliably predict $\mathrm{E}[Y|X=0,Z=33]$?
- Will end up extrapolating, with extreme uncertainty (low precision).

Z	X	Y	Y (1)	Y (0)
36	0	1	?	1
35	0	1	?	1
38	0	0	?	0
40	0	1	?	1
39	0	1	?	1
35	1	0	0	?
37	1	1	1	?
36	1	1	1	?
40	1	0	0	?
38	1	1	1	?

Estimating Causal Effects with Regression Modeling

- If our assumptions hold, then: E[Y(1)|X=0,Z=z] = E[Y|X=0,Z=z]
- We can impute the missing potential outcomes:

Z	X	Y	Y (1)	Y (0)
36	0	1	$\widehat{E}[Y X=1,Z=36]$	1
35	0	1	?	1
38	0	0	?	0
40	0	1	?	1
39	0	1	?	1
35	1	0	0	?
37	1	1	1	?
36	1	1	1	?
40	1	0	0	?
38	1	1	1	?

Estimating Causal Effects with Regression Modeling

- If our assumptions hold, then: E[Y(1)|X=0,Z=z] = E[Y|X=0,Z=z]
- We can impute the missing potential outcomes:

Z	X	Y	Y (1)	<i>Y</i> (0)
36	0	1	$\widehat{E}[Y X=1,Z=36]$	1
35	0	1	$\widehat{E}[Y X=1,Z=35]$	1
38	0	0	?	0
40	0	1	?	1
39	0	1	?	1
35	1	0	0	?
37	1	1	1	?
36	1	1	1	?
40	1	0	0	?
38	1	1	1	?

Estimating Causal Effects with Regression Modeling

- If our assumptions hold, then: E[Y(1)|X=0,Z=z] = E[Y|X=0,Z=z]
- We can impute the missing potential outcomes
- Can also regress on more than one Z variable, to better justify $Y(x) \perp\!\!\!\perp X|Z_1, \dots, Z_p$

Z	X	Y	Y (1)	Y (0)
36	0	1	$\widehat{\mathbf{E}}[Y X=1,Z=36]$	1
35	0	1	$\widehat{E}[Y X=1,Z=35]$	1
38	0	0	?	0
40	0	1	?	1
39	0	1	?	1
35	1	0	0	?
37	1	1	1	?
36	1	1	1	?
40	1	0	0	?
38	1	1	1	?

Causal regression modeling of phototherapy and jaundice

- Vittinghoff et al (2012) performed logistic regression modeling on the jaundice data using the following predictor covariates: treatment (phototherapy vs. watchful waiting), chromosomal sex, gestational age (discretized into 6 categories), birth weight (numeric, linear term), interaction between gestational age and birth weight, bilirubin level at time of treatment assignment (relative to a guideline threshold for phototherapy treatment), age at time of treatment assignment (discretized into days), and hospital (treated as a clustering variable)
- Results:
 - $-\widehat{P}[Y(1) = 1] = 0.16\%;$
 - $-\widehat{P}[Y(1) = 0] = 0.96\%;$
 - Estimated risk difference = -0.79%
- Compare: unadjusted analysis risk difference: -0.4%; risk difference stratifying on gestational age ≤ 37 weeks: -0.5%

Analysis 4: Matching (briefly)

If a given observation has no exact counterparts (with opposite treatment), maybe we can use an approximate counterpart instead:

Z	X	Y	<i>Y</i> (1)	<i>Y</i> (0)
36	0	1	?	1
35	0	1	?	1
38	0	0	?	0
40	0	1	?	1
39	0	1	?	1
35	1	0	0	?
37	1	1	1	?
36	1	1	1	?
40	1	0	0	?
38	1	1	1	?

Analysis 4: Matching (briefly)

- If a given observation has no exact counterparts (with opposite treatment), maybe we can use an approximate counterpart instead.
- Maybe we just pick one of the closest matches and call it close enough?

Z	X	Y	Y (1)	Y (0)
36	0	1	?	1
35	0	1	?	1
38	0	0	?	0
40	0	1	?	1
39	0	1	?	1
35	1	0	0	?
37	1	1	1	?
36	1	1	1	?
40	1	0	0	?
38	1	1	1	?

Analysis 4: Matching (briefly)

- If a given observation has no exact counterparts (with opposite treatment), maybe we can use an approximate counterpart instead.
- Maybe we just pick one of the closest matches and call it close enough?
- Maybe we pick one "matching" counterpart for every observation?
- We might need to discard some observations without any close matches.
- There are many different methods for matching.

Z	X	Y	Y (1)	Y (0)
36	0	1	?	1
35	0	1	?	1
38	0	0	?	0
40	0	1	?	1
39	0	1	?	1
35	1	0	0	?
37	1	1	1	0
36	1	1	1	?
40	1	0	0	?
38	1	1	1	?

Analysis 5: Propensity scores (also briefly)

- If we need several Zs to justify the conditional independence assumption, stratification, regression, and matching can become very complicated.
- Maybe we can combine those Zs into a single variable that summarizes them and still provides conditional independence.
- If X is binary and the conditional independence assumption holds for Z_1, \ldots, Z_p , then it also holds for $\pi(z_1, \ldots, z_p) = P(X = 1 | Z_1 = z_1, \ldots, Z_p = z_p)$; that is, $Y(x) \perp \!\!\! \perp X \mid \pi(Z)$
- We can estimate $\hat{\pi}(z_1, ..., z_p) = \hat{P}(X = 1 | Z_1 = z_1, ..., Z_p = z_p)$ and use it with univariate stratification, regression, or matching.
- More on this topic in the third seminar in this series!

How do we know if we have the right covariates?

- The conditional independence assumption is crucial for all the methods we discussed today. How can we tell if it is plausible? Hard to even think about.
- Maybe we can make smaller, easier-to-understand, possibly even testable, assumptions, from which we could mathematically deduce whether a given set of covariates provides conditional independence.
- Next session: we draw flow-chart diagrams (called directed acyclic graphs, "DAGs") to represent our assumptions about the data-generating process, and analyze these diagrams to determine which sets of covariates would produce conditional independence, given our assumptions.

Other causal inference topics to explore

- We haven't discussed how to compute standard errors or confidence intervals for our causal effect estimates.
 - There are various methods, but when in doubt, try the bootstrap: often conceptually simple, although computationally time-consuming.
- There are other common causal inference methods:
 - inverse-probability weighting (IPW)
 - g-estimation
 - Instrumental variables

Help is available

- My email: demorrison@ucdavis.edu
- CTSC and Cancer Center Biostatistics Office Hours
 - Every Tuesday from 12 2:00 currently via WebEx
 - 1st & 3rd Wednesday from 1:00 2:00 currently via WebEx
 - Sign-up through the CTSC Biostatistics Website
- EHS Biostatistics Office Hours
 - Upon request
- Request Biostatistics Consultations
 - CTSC
 - MIND IDDRC
 - Cancer Center Shared Resource
 - EHS Center

Thanks for attending!